Skip to main content
Log in

In situ synthesis and hardness of TiC/Ti5Si3 composites on Ti-5Al-2.5Sn substrates by gas tungsten arc welding

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

TiC/Ti5Si3 composites were fabricated on Ti-5Al-2.5Sn substrates by gas tungsten arc welding (GTAW). Identification of the phases was performed using X-ray diffraction (XRD). The microstructures were analyzed using scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectrometry (EDS) and optical microscopy (OM). The Vickers hardness was measured with a micro-hardness tester. The TiC/Ti5Si3 composites were obtained in a double-layer track, and the Vickers hardness of the track increased by two to three times compared with the Ti-5Al-2.5Sn substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Liu, L. Wu, M. Yu, S.M. Li, and G.L. Wu, Effects of sealing process on corrosion resistance and roughness of anodic films of titanium alloy Ti-10V-2Fe-3Al, J. Cent. South. Univ. Technol., 18(2011), No. 6, p. 1795.

    Article  CAS  Google Scholar 

  2. K.G. Budinski, Tribological properties of titanium alloys, Wear, 151(1991), No. 2, p. 203.

    Article  CAS  Google Scholar 

  3. T. Baaai, E.J. Knystautas, and M. Fiset, Tribomechanical properties of ion-implantation-synthesized BN films and their dependence on Ti-6Al-4V substrate hardness, Surf. Coat. Technol., 72(1995), No. 1–2, p. 120.

    Google Scholar 

  4. Y.Q. Fu, J. Wei, B.B. Yan, and N.L. Loh, Characterization and tribological evaluation of duplex treatment by depositing carbon nitride films on plasma nitrided Ti-6Al-4V, J. Mater. Sci., 35(2000), No. 9, p. 2215.

    Article  CAS  Google Scholar 

  5. D.P. Riley, Synthesis and characterization of SHS bonded Ti5Si3 on Ti substrates, Intermetallics, 14(2006), No. 7, p. 770.

    Article  CAS  Google Scholar 

  6. Y.Z. Zhan, X.J. Zhang, J. Hu, Q.H. Guo, and Y. Du, Evolution of the microstructure and hardness of the Ti-Si alloys during high temperature heat-treatment, J. Alloys Compd., 479(2009), No. 1–2, p. 246.

    Article  CAS  Google Scholar 

  7. R.L. Sun, Y.W. Lei, andW. Niu, Laser clad Cr3C2-Ni composite coating on titanium alloys, Surf. Eng., 25(2009), No. 3, p. 206.

    Article  CAS  Google Scholar 

  8. T.I. Wu, Surface modification of CP-Ti and Ti-6Al-4V alloy by fluidised bed carburization, Surf. Eng., 25(2009), No. 1, p. 50.

    Article  CAS  Google Scholar 

  9. A. Nishimoto, T.E. Bell, and T. Bell, Feasibility study of active screen plasma nitriding of titanium alloy, Surf. Eng., 26(2010), No. 1–2, p. 74.

    Article  CAS  Google Scholar 

  10. A.K. Kuruvilla, K.S. Prasad, V.V. Bhanuprasad, and Y.R. Mahajan, Microstructure property correlation in Al/TiB2 (XD) composites, Scripta Metall. Mater., 24(1990), No. 5, p. 873.

    Article  CAS  Google Scholar 

  11. J.J. Williams, Y.Y. Ye, M.J. Kramer, K.M. Ho, L. Hong, C.L. Fu, and S.K. Malik, Theoretical calculations and experimental measurements of the structure of Ti5Si3 with interstitial additions, Intermetallics, 8(2000), No. 8, p. 937.

    Article  CAS  Google Scholar 

  12. J.L. Li, D.L. Jiang, and S.H. Tan, Microstructure and mechanical properties of in situ produced Ti5Si3/TiC nanocomposites, J. Eur. Ceram. Soc., 22(2002), No. 4, p. 551.

    Article  CAS  Google Scholar 

  13. N. Miyano, H. Iwasa,M. Matsumoto, K. Ameyama, and S. Sugiyama, Micro-structures of TiC/Ti5Si3 composite produced by powder metallurgy and LIGA process, Microsyst. Technol., 11(2005), No. 4–5, p. 374.

    Article  CAS  Google Scholar 

  14. D.D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance, Surf. Coat. Technol., 205(2011), No. 10, p. 3285.

    Article  CAS  Google Scholar 

  15. S. Gorsse, J.P. Chaminade, and Y. Le Petitcorps, In situ preparation of titanium base composites reinforced by TiB2 single crystals using a powder metallurgy technique, Compos. Part A, 29(1998), No. 9–10, p. 1229.

    Article  Google Scholar 

  16. A. Biswas, I. Manna, U.K. Chatterjee, U. Bhattacharyya, and J.D. Majumdar, Evaluation of electrochemical properties of thermally oxidized Ti-6Al-4V for bioimplant application, Surf. Eng., 25 (2009), No. 2, p. 141.

    Article  CAS  Google Scholar 

  17. A. Zhecheva, W. Sha, S. Malinov, and A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods, Surf. Coat. Technol., 200(2005), No. 7, p. 2192.

    Article  CAS  Google Scholar 

  18. K. Euh, J. Lee, S. Lee, Y. Koo, and N.J. Kim, Microstructural modification and hardness improvement in boride/Ti-6Al-4V surface-alloyed materials fabricated by high-energy electron beam irradiation, Scripta Mater., 45(2001), No. 1, p. 1.

    Article  CAS  Google Scholar 

  19. H.B. Ji, L.F. Xia, X.X. Ma, and Y. Sun, Tribological performance of Ti-6Al-4V plasma-based ion implanted with nitrogen, Wear, 246(2000), No. 1–2, p. 40.

    Article  CAS  Google Scholar 

  20. X.H. Wang, S.L. Song, S.Y. Qu, and Z.D. Zou, Characterization of in situ synthesized TiC particle reinforced Fe-based composite coatings produced by multi-pass overlapping GTAW melting process, Surf. Coat. Technol., 201(2007), No. 12, p. 5899.

    Article  CAS  Google Scholar 

  21. F. Adib Hajbagheri, S.F. Kashani Bozorg, and A.A. Amadeh, Microstructure and wear assessment of TIG surface alloying of CP-titanium with silicon, J. Mater. Sci., 43(2008), No. 17, p. 5720.

    Article  Google Scholar 

  22. H.M. Flower, P.R. Swann, and D.R.F. West, The effect of Si, Zr, Al and Mo on the structure and strength of Ti martensite, J. Mater. Sci., 7(1972), No. 8, p. 929.

    Article  CAS  Google Scholar 

  23. S.B. Li, J.X. Xie, L.T. Zhang, and L.F. Cheng, Synthesis and some properties of Ti3SiC2 by hot pressing of titanium, silicon, and carbon powders: Part 1. Effect of starting composition on formation of Ti3SiC2 and observation of Ti3SiC2 crystal morphology, Mater. Sci. Technol., 19(2003), No. 10, p. 1442.

    Article  CAS  Google Scholar 

  24. D.L. Ye and J.H. Hu, Handbook of Thermodynamic Data for Applied Inorganic Materials, 2nd Ed., Metallurgical Industry Press, Beijing, 2002, p. 3

    Google Scholar 

  25. Y.S. Tian, C.Z. Chen, L.X. Chen, and Q.H. Huo, Microstructures and wear properties of composite coatings produced by laser alloying of Ti-6Al-4V with graphite and silicon mixed powders, Mater. Lett., 60(2006), No. 1, p. 109.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-qing Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Wq., Dai, L. & Gui, Cb. In situ synthesis and hardness of TiC/Ti5Si3 composites on Ti-5Al-2.5Sn substrates by gas tungsten arc welding. Int J Miner Metall Mater 20, 284–289 (2013). https://doi.org/10.1007/s12613-013-0725-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0725-4

Keywords

Navigation