Skip to main content
Log in

Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health

  • Review
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut’s microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, Aiello V, Romano B, De Lorenzo A, Izzo AA, Capasso R (2019) Gut microbiota and obesity: a role for probiotics. Nutrients 11:2690. https://doi.org/10.3390/nu11112690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giambò F, Leone GM, Gattuso G, Rizzo R, Cosentino A, Cinà D, Teodoro M, Costa C, Tsatsakis A, Fenga C, Falzone L (2021) Genetic and epigenetic alterations induced by pesticide exposure: integrated analysis of gene expression, microRNA expression, and DNA methylation datasets. Int J Environ Res Public Health 18:8697. https://doi.org/10.3390/ijerph18168697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang X, Zhang P, Zhang X (2021) Probiotics regulate gut microbiota: an effective method to improve immunity. Molecules 26:6076. https://doi.org/10.3390/molecules26196076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin X, Liu Y, Ma L, Ma X, Shen L, Ma X, Chen Z, Chen H, Li D, Su Z, Chen X (2021) Constipation induced gut microbiota dysbiosis exacerbates experimental autoimmune encephalomyelitis in C57BL/6 mice. J Transl Med 19. https://doi.org/10.1186/s12967-021-02995-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Flint HJ, Duncan SH, Louis P (2017) The impact of nutrition on intestinal bacterial communities. Curr Opin Microbiol 38:59–65. https://doi.org/10.1016/j.mib.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Sung CYJ, Lee N, Ni Y, Pihlajamäki J, Panagiotou G, El-Nezami H (2016) Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci 113. https://doi.org/10.1073/pnas.1518189113

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sodhi KK, Mishra LC, Singh CK, Kumar M (2022) Perspective on the heavy metal pollution and recent remediation strategies. Curr Res Microb Sci 3:100166. https://doi.org/10.1016/j.crmicr.2022.100166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sall ML, Diaw AKD, Gningue-Sall D, Efremova Aaron S, Aaron J-J (2020) Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ Sci Pollut Res 27:29927–29942. https://doi.org/10.1007/s11356-020-09354-3

    Article  CAS  Google Scholar 

  9. Amankwaa G, Yin X, Zhang L, Huang W, Cao Y, Ni X, Gyimah E (2021) Spatial distribution and eco-environmental risk assessment of heavy metals in surface sediments from a crater lake (Bosomtwe/Bosumtwi). Environ Sci Pollut Res 28:19367–19380. https://doi.org/10.1007/s11356-020-12112-0

    Article  CAS  Google Scholar 

  10. Ansari F, Lee CC, Rashidimehr A, Eskandari S, Ashaolu TJ, Mirzakhani E, Pourjafar H, Jafari SM (2024) The role of probiotics in improving food safety; detoxification of heavy metals and chemicals. Toxin Reviews 43(1):63–91. https://doi.org/10.1080/15569543.2023.2283768

    Article  CAS  Google Scholar 

  11. Arun KB, Madhavan A, Sindhu R, Emmanual S, Binod P, Pugazhendhi A, Sirohi R, Reshmy R, Awasthi MK, Gnansounou E, Pandey A (2021) Probiotics and gut microbiome − prospects and challenges in remediating heavy metal toxicity. J Hazard Mater 420:126676. https://doi.org/10.1016/j.jhazmat.2021.126676

    Article  CAS  PubMed  Google Scholar 

  12. Tudela H, Claus SP, Saleh M (2021) Next generation microbiome research: identification of keystone species in the metabolic regulation of host-gut microbiota interplay. Front Cell Dev Biol 9. https://doi.org/10.3389/fcell.2021.719072

    Article  PubMed  PubMed Central  Google Scholar 

  13. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E (2017) Dysbiosis and the immune system. Nat Rev Immunol 17:219–232. https://doi.org/10.1038/nri.2017.7

    Article  CAS  PubMed  Google Scholar 

  14. Chai L, Wang H, Li X, Wang H (2022) Comparison of the characteristics of gut microbiota response to lead in Bufo gargarizans tadpole at different developmental stages. Environ Sci Pollut Res 30:20907–20922. https://doi.org/10.1007/s11356-022-23671-9

    Article  CAS  Google Scholar 

  15. Jaglin M, Rhimi M, Philippe C, Pons N, Bruneau A, Goustard B, Daugé V, Maguin E, Naudon L, Rabot S (2018) Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats. Front Neurosci 12. https://doi.org/10.3389/fnins.2018.00216

    Article  PubMed  PubMed Central  Google Scholar 

  16. He X, Tu Y, Song Y, Yang G, You M (2022) The relationship between pesticide exposure during critical neurodevelopment and autism spectrum disorder: a narrative review. Environ Res 203:111902. https://doi.org/10.1016/j.envres.2021.111902

    Article  CAS  PubMed  Google Scholar 

  17. Wang P-C, Zhao S, Yang B-Y, Wang Q-H, Kuang H-X (2016) Anti-diabetic polysaccharides from natural sources: a review. Carbohyd Polym 148:86–97. https://doi.org/10.1016/j.carbpol.2016.02.060

    Article  CAS  Google Scholar 

  18. La Fata G, Weber P, Mohajeri MH (2017) Probiotics and the gut immune system: indirect regulation. Probiotics and Antimicrobial Proteins 10:11–21. https://doi.org/10.1007/s12602-017-9322-6

    Article  CAS  PubMed Central  Google Scholar 

  19. Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA (2018) Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol 44:34–40. https://doi.org/10.1016/j.mib.2018.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mahdhi A, Chakroun I, Espinosa-Ruiz C, Messina CM, Arena R, Majdoub H, Santulli A, Mzoughi R, Esteban MA (2020) Dietary administration effects of exopolysaccharide from potential probiotic strains on immune and antioxidant status and nutritional value of European sea bass (Dicentrarchus labrax L.). Res Vet Sci 131:51–58. https://doi.org/10.1016/j.rvsc.2020.04.008

    Article  CAS  PubMed  Google Scholar 

  21. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther P-L, Eberl G, Bérard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, Opolon P, Yessaad N, Vivier E, Ryffel B, Elson CO, Doré J, Kroemer G, Lepage P, Boneca IG, Ghiringhelli F, Zitvogel L (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971–976. https://doi.org/10.1126/science.1240537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. KavitaR P, SureshR N, BabuV V (2015) Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol 52:7577–7587. https://doi.org/10.1007/s13197-015-1921-1

    Article  CAS  Google Scholar 

  23. Jafarpour D, Shekarforoush SS, Ghaisari HR, Nazifi S, Sajedianfard J, Eskandari MH (2017) Protective effects of synbiotic diets of Bacillus coagulans, Lactobacillus plantarum and inulin against acute cadmium toxicity in rats. BMC Complement Altern Med. https://doi.org/10.1186/s12906-017-1803-3

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gomaa EZ (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113:2019–2040. https://doi.org/10.1007/s10482-020-01474-7

    Article  PubMed  Google Scholar 

  25. Zhu W, Lv Y, Zhang Q-D, Chang L-M, Chen Q-H, Wang B, Jiang J-P (2023) Cascading effects of Pb on the environmental and symbiotic microbiota and tadpoles’ physiology based on field data and laboratory validation. Sci Total Environ 862:160817. https://doi.org/10.1016/j.scitotenv.2022.160817

    Article  CAS  PubMed  Google Scholar 

  26. Gokulan K, Arnold MG, Jensen J, Vanlandingham M, Twaddle NC, Doerge DR, Cerniglia CE, Khare S (2018) Exposure to arsenite in CD-1 mice during juvenile and adult stages: effects on intestinal microbiota and gut-associated immune status. mBio 9. https://doi.org/10.1128/mbio.01418-18

    Article  Google Scholar 

  27. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, Pusey AE, Peeters M, Hahn BH, Ochman H (2016) Cospeciation of gut microbiota with hominids. Science 353:380–382. https://doi.org/10.1126/science.aaf3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hills R, Pontefract B, Mishcon H, Black C, Sutton S, Theberge C (2019) Gut microbiome: profound implications for diet and disease. Nutrients 11:1613. https://doi.org/10.3390/nu11071613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Usuda H, Okamoto T, Wada K (2021) Leaky gut: effect of dietary fiber and fats on microbiome and intestinal barrier. Int J Mol Sci 22:7613. https://doi.org/10.3390/ijms22147613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mu J, Guo Z, Wang X, Wang X, Fu Y, Li X, Zhu F, Hu G, Ma X (2023) Seaweed polysaccharide relieves hexavalent chromium-induced gut microbial homeostasis. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.1100988

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lu L, Claud EC (2018) Intrauterine inflammation, epigenetics, and microbiome influences on preterm infant health. Current Pathobiology Reports 6:15–21. https://doi.org/10.1007/s40139-018-0159-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schippa S, Conte M (2014) Dysbiotic events in gut microbiota: impact on human health. Nutrients 6:5786–5805. https://doi.org/10.3390/nu6125786

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bering S (2018) Human milk oligosaccharides to prevent gut dysfunction and necrotizing enterocolitis in preterm neonates. Nutrients 10:1461. https://doi.org/10.3390/nu10101461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, Sears MR, Becker AB, Scott JA, Kozyrskyj AL (2013) Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. Can Med Assoc J 185:385–394. https://doi.org/10.1503/cmaj.121189

    Article  Google Scholar 

  35. Vandenplas Y, Carnielli VP, Ksiazyk J, Luna MS, Migacheva N, Mosselmans JM, Picaud JC, Possner M, Singhal A, Wabitsch M (2020) Factors affecting early-life intestinal microbiota development. Nutrition 78:110812. https://doi.org/10.1016/j.nut.2020.110812

    Article  CAS  PubMed  Google Scholar 

  36. Jm A, Lj M, Gm N, Moore R, Cook Md, Ba W, Holscher Hd, Ja W (2018) Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 50:747–757. https://doi.org/10.1249/mss.0000000000001495

    Article  Google Scholar 

  37. Feng P, Ye Z, Han H, Ling Z, Zhou T, Zhao S, Virk AK, Kakade A, Abomohra AE-F, El-Dalatony MM, Salama E-S, Liu P, Li X (2020) Tibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota. Commun Biol 3. https://doi.org/10.1038/s42003-020-0968-3

    Article  PubMed  PubMed Central  Google Scholar 

  38. Han H, Yi B, Zhong R, Wang M, Zhang S, Ma J, Yin Y, Yin J, Chen L, Zhang H (2021) From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. Microbiome. https://doi.org/10.1186/s40168-021-01093-y

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li X, Brejnrod AD, Ernst M, Rykær M, Herschend J, Olsen NMC, Dorrestein PC, Rensing C, Sørensen SJ (2019) Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. Environ Int 126:454–467. https://doi.org/10.1016/j.envint.2019.02.048

    Article  CAS  PubMed  Google Scholar 

  40. Bist P, Choudhary S (2022) Impact of heavy metal toxicity on the gut microbiota and its relationship with metabolites and future probiotics strategy: a review. Biol Trace Elem Res 200:5328–5350. https://doi.org/10.1007/s12011-021-03092-4

    Article  CAS  PubMed  Google Scholar 

  41. Chiu K, Warner G, Nowak RA, Flaws JA, Mei W (2020) The impact of environmental chemicals on the gut microbiome. Toxicol Sci 176:253–284. https://doi.org/10.1093/toxsci/kfaa065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martinez-Medina M, Denizot J, Dreux N, Robin F, Billard E, Bonnet R, Darfeuille-Michaud A, Barnich N (2013) Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut 63:116–124. https://doi.org/10.1136/gutjnl-2012-304119

    Article  CAS  PubMed  Google Scholar 

  43. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Man Lei Y, Jabri B, Alegre M-L, Chang EB, Gajewski TF (2015) Commensal Bifido bacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 350:1084–1089. https://doi.org/10.1126/science.aac4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abdelsalam NA, Ramadan AT, ElRakaiby MT, Aziz RK (2020) Toxicomicrobiomics: the human microbiome vs. pharmaceutical, dietary, and environmental xenobiotics. Front Pharmacol. https://doi.org/10.3389/fphar.2020.00390

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cheng Y, Liu J, Ling Z (2021) Short-chain fatty acids-producing probiotics: a novel source of psychobiotics. Crit Rev Food Sci Nutr 62:7929–7959. https://doi.org/10.1080/10408398.2021.1920884

    Article  CAS  PubMed  Google Scholar 

  46. Ragavan ML, Hemalatha S (2023) The functional roles of short chain fatty acids as postbiotics in human gut: future perspectives. Food Science and Biotechnology. https://doi.org/10.1007/s10068-023-01414-x

    Article  PubMed  Google Scholar 

  47. Blasco-Moreno B, de Campos-Mata L, Böttcher R, García-Martínez J, Jungfleisch J, Nedialkova DD, Chattopadhyay S, Gas M-E, Oliva B, Pérez-Ortín JE, Leidel SA, Choder M, Díez J (2019) The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins. Nat Commun. https://doi.org/10.1038/s41467-019-09199-6

    Article  PubMed  PubMed Central  Google Scholar 

  48. Qi X, Yang M, Stenberg J, Dey R, Fogwe L, Alam MS, Kimchi ET, Staveley-O’Carroll KF, Li G (2020) Gut microbiota mediated molecular events and therapy in liver diseases. World J Gastroenterol 26:7603–7618. https://doi.org/10.3748/wjg.v26.i48.7603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hussain A, Zia KM, Tabasum S, Noreen A, Ali M, Iqbal R, Zuber M (2017) Blends and composites of exopolysaccharides; properties and applications: a review. Int J Biol Macromol 94:10–27. https://doi.org/10.1016/j.ijbiomac.2016.09.104

    Article  CAS  PubMed  Google Scholar 

  50. Wijarnpreecha K, Lou S, Watthanasuntorn K, Kroner PT, Cheungpasitporn W, Lukens F, Pungpapong S, Keaveny A, Ungprasert P (2019) Su1083 – Small intestinal bacterial overgrowth and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Gastroenterology 156:S-1271. https://doi.org/10.1016/s0016-5085(19)40180-7

    Article  Google Scholar 

  51. Yang C-S, Lai Y-Y, Tsai C-C (2023) Investigating the effectiveness of exopolysaccharide-producing lactic acid bacteria in biosorbing lead (II), attaching to Caco-2 cells, and provoking anti inflammatory responses. J Food Prot 86:100106. https://doi.org/10.1016/j.jfp.2023.100106

    Article  PubMed  Google Scholar 

  52. Mahurpawar M (2015) Effects of heavy metals on human health effects of heavy metals on human health. Int J Res Granthaalayah 3:1–7. https://doi.org/10.29121/granthaalayah.v3.i9se.2015.3282

    Article  Google Scholar 

  53. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chu H, Williams B, Schnabl B (2018) Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver Research 2:43–51. https://doi.org/10.1016/j.livres.2017.11.005

    Article  PubMed  PubMed Central  Google Scholar 

  55. Robertson RC, Manges AR, Finlay BB, Prendergast AJ (2019) The human microbiome and child growth – first 1000 days and beyond. Trends Microbiol 27:131–147. https://doi.org/10.1016/j.tim.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  56. Duan H, Yu L, Tian F, Zhai Q, Fan L, Chen W (2020) Gut microbiota: a target for heavy metal toxicity and a probiotic protective strategy. Sci Total Environ 742:140429. https://doi.org/10.1016/j.scitotenv.2020.140429

    Article  CAS  PubMed  Google Scholar 

  57. Assefa S, Köhler G (2020) Intestinal microbiome and metal toxicity. Current Opinion in Toxicology 19:21–27. https://doi.org/10.1016/j.cotox.2019.09.009

    Article  PubMed  Google Scholar 

  58. Zhai Q, Liu Y, Wang C, Zhao J, Zhang H, Tian F, Lee Y, Chen W (2019) Increased cadmium excretion due to oral administration of Lactobacillus plantarum strains by regulating enterohepatic circulation in mice. J Agric Food Chem 67:3956–3965. https://doi.org/10.1021/acs.jafc.9b01004

    Article  CAS  PubMed  Google Scholar 

  59. Wu G, Xiao X, Feng P, Xie F, Yu Z, Yuan W, Liu P, Li X (2017) Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1–1. Sci Rep. https://doi.org/10.1038/s41598-017-15216-9

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rahman Z, Singh VP (2019) The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Moni Assess. https://doi.org/10.1007/s10661-019-7528-7

    Article  Google Scholar 

  61. Jin Y, Chi J, LoMonaco K, Boon A, Gu H (2023) Recent review on selected xenobiotics and their impacts on gut microbiome and metabolome. TrAC, Trends Anal Chem 166:117155. https://doi.org/10.1016/j.trac.2023.117155

    Article  CAS  Google Scholar 

  62. Chiocchetti GM, Domene A, Kühl AA, Zúñiga M, Vélez D, Devesa V, Monedero V (2019) In vivo evaluation of the effect of arsenite on the intestinal epithelium and associated microbiota in mice. Arch Toxicol 93:2127–2139. https://doi.org/10.1007/s00204-019-02510-w

    Article  CAS  PubMed  Google Scholar 

  63. Hoen AG, Madan JC, Li Z, Coker M, Lundgren SN, Morrison HG, Palys T, Jackson BP, Sogin ML, Cottingham KL, Karagas MR (2018) Sex-specific associations of infants’ gut microbiome with arsenic exposure in a US population. Sci Rep. https://doi.org/10.1038/s41598-018-30581-9

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shi Z, Zhang J, Jiang Y, Wen Y, Gao Z, Deng W, Yin Y, Zhu F (2022) Two low-toxic Klebsiella pneumoniae strains from gut of black soldier fly Hermetia illucens are multi-resistance to sulfonamides and cadmium. Environ Pollut 312:120062. https://doi.org/10.1016/j.envpol.2022.120062

    Article  CAS  PubMed  Google Scholar 

  65. Liu Y, Zhang S, Deng H, Chen A, Chai L (2023) Lead and copper influenced bile acid metabolism by changing intestinal microbiota and activating farnesoid X receptor in Bufo gargarizans. Sci Total Environ 863:160849. https://doi.org/10.1016/j.scitotenv.2022.160849

    Article  CAS  PubMed  Google Scholar 

  66. Aljohani ASM (2023) Heavy metal toxicity in poultry: a comprehensive review. Front Vet Sci. https://doi.org/10.3389/fvets.2023.1161354

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yan R, Ding J, Yang Q, Zhang X, Han J, Jin T, Shi S, Wang X, Zheng Y, Li H, Zhang H, An Y (2023) Lead acetate induces cartilage defects and bone loss in zebrafish embryos by disrupting the GH/IGF-1 axis. Ecotoxicol Environ Saf 253:114666. https://doi.org/10.1016/j.ecoenv.2023.114666

    Article  CAS  PubMed  Google Scholar 

  68. Benhalima H, Sbartai H, Sbartai I (2023) Evaluation the toxicity of heavy metal mixtures in anecic earthworms (Aporrectodea giardi). Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-023-01034-w

    Article  PubMed  Google Scholar 

  69. Barst BD, Chételat J, Basu N (2022) Toxicological risk of mercury for fish and invertebrate prey in the Arctic. Sci Total Environ 836:155702. https://doi.org/10.1016/j.scitotenv.2022.155702

    Article  CAS  PubMed  Google Scholar 

  70. Aski MAH, Ghobadi S, Sari AA, Ardeshir RA, Arabi MHG, Manouchehri H (2023) Correction to: health risk assessment of heavy metals (Zn, Pb, Cd, and Hg) in water and muscle tissue of farmed carp species in North Iran. Environ Sci Pollut Res 30:32473–32473. https://doi.org/10.1007/s11356-023-25425-7

    Article  Google Scholar 

  71. Chen H, Zhu C, Zhou X (2022) Effects of lead and cadmium combined heavy metals on liver function and lipid metabolism in mice. Biol Trace Elem Res 201:2864–2876. https://doi.org/10.1007/s12011-022-03390-5

    Article  CAS  PubMed  Google Scholar 

  72. Liu Y, Li Y, Liu K, Shen J (2014) Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract. PLoS ONE 9:e85323. https://doi.org/10.1371/journal.pone.0085323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Puente-Marin S, Hultman P, Ekstrand J, Nielsen JB, Havarinasab S (2023) Secondary exposure to heavy metal in genetically susceptible mice leads to acceleration of autoimmune response. Environ Toxicol Pharmacol 104:104317. https://doi.org/10.1016/j.etap.2023.104317

    Article  CAS  PubMed  Google Scholar 

  74. Elfidasari D, Rijal MS, Shalsabilla SE, Rahma Fadila DS, Cici A, Pikoli MR, Tetriana D, Sugoro I (2023) Intestinal bacteria diversity of suckermouth catfish (Pterygoplichthys pardalis) in the Cd, Hg, and Pb contaminated Ciliwung River. Indonesia Heliyon 9:e14842. https://doi.org/10.1016/j.heliyon.2023.e14842

    Article  CAS  PubMed  Google Scholar 

  75. Rodríguez-Viso P, Domene A, Vélez D, Devesa V, Zúñiga M, Monedero V (2023) Lactic acid bacteria strains reduce in vitro mercury toxicity on the intestinal mucosa. Food Chem Toxicol 173:113631. https://doi.org/10.1016/j.fct.2023.113631

    Article  CAS  PubMed  Google Scholar 

  76. Tu P, Chi L, Bodnar W, Zhang Z, Gao B, Bian X, Stewart J, Fry R, Lu K (2020) Gut microbiome toxicity: connecting the environment and gut microbiome-associated diseases. Toxics 8:19. https://doi.org/10.3390/toxics8010019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu L, Duan H, Kellingray L, Cen S, Tian F, Zhao J, Zhang H, Gall GL, Mayer MJ, Zhai Q, Chen W, Narbad A (2020) Lactobacillus plantarum-mediated regulation of dietary aluminum induces changes in the human gut microbiota: an in vitro colonic fermentation study. Probiotics and Antimicrobial Proteins 13:398–412. https://doi.org/10.1007/s12602-020-09677-0

    Article  CAS  Google Scholar 

  78. Ding J, An XL, Lassen SB, Wang HT, Zhu D, Ke X (2019) Heavy metal-induced co-selection of antibiotic resistance genes in the gut microbiota of collembolans. Sci Total Environ 683:210–215. https://doi.org/10.1016/j.scitotenv.2019.05.302

    Article  CAS  PubMed  Google Scholar 

  79. Gupta P, Diwan B (2017) Bacterial Exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports 13:58–71. https://doi.org/10.1016/j.btre.2016.12.006

    Article  PubMed  Google Scholar 

  80. Coryell M, McAlpine M, Pinkham NV, McDermott TR, Walk ST (2018) The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nat Commun. https://doi.org/10.1038/s41467-018-07803-9

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhang D, Yin C, Abbas N, Mao Z, Zhang Y (2020) Multiple heavy metal tolerance and removal by an earthworm gut fungus Trichoderma brevicompactum QYCD-6. Sci Rep. https://doi.org/10.1038/s41598-020-63813-y

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ya J, Li X, Wang L, Kou H, Wang H, Zhao H (2020) The effects of chronic cadmium exposure on the gut of Bufo gargarizans larvae at metamorphic climax: histopathological impairments, microbiota changes and intestinal remodeling disruption. Ecotoxicol Environ Saf 195:110523. https://doi.org/10.1016/j.ecoenv.2020.110523

    Article  CAS  PubMed  Google Scholar 

  83. Yin N, Cai X, Zheng L, Du H, Wang P, Sun G, Cui Y (2020) In vitro assessment of arsenic release and transformation from As(V)-sorbed goethite and jarosite: the influence of human gut microbiota. Environ Sci Technol 54:4432–4442. https://doi.org/10.1021/acs.est.9b07235

    Article  CAS  PubMed  Google Scholar 

  84. Średnicka P, Juszczuk-Kubiak E, Wójcicki M, Akimowicz M, Roszko MŁ (2021) Probiotics as a biological detoxification tool of food chemical contamination: a review. Food Chem Toxicol 153:112306. https://doi.org/10.1016/j.fct.2021.112306

    Article  CAS  PubMed  Google Scholar 

  85. Du H, Yin N, Cai X, Wang P, Li Y, Fu Y, MstS S, Sun G, Cui Y (2020) Lead bioaccessibility in farming and mining soils: the influence of soil properties, types and human gut microbiota. Sci Total Environ 708:135227. https://doi.org/10.1016/j.scitotenv.2019.135227

    Article  CAS  PubMed  Google Scholar 

  86. Mesnage R, Teixeira M, Mandrioli D, Falcioni L, Ducarmon QR, Zwittink RD, Mazzacuva F, Caldwell A, Halket J, Amiel C, Panoff J-M, Belpoggi F, Antoniou MN (2021) Use of shotgun metagenomics and metabolomics to evaluate the impact of glyphosate or roundup MON 52276 on the gut microbiota and serum metabolome of Sprague-Dawley rats. Environ Health Perspect. https://doi.org/10.1289/ehp6990

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hu J, Lesseur C, Miao Y, Manservisi F, Panzacchi S, Mandrioli D, Belpoggi F, Chen J, Petrick L (2021) Low-dose exposure of glyphosate-based herbicides disrupt the urine metabolome and its interaction with gut microbiota. Sci Rep. https://doi.org/10.1038/s41598-021-82552-2

    Article  PubMed  PubMed Central  Google Scholar 

  88. Leino L, Tall T, Helander M, Saloniemi I, Saikkonen K, Ruuskanen S, Puigbò P (2021) Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide. J Hazard Mater 408:124556. https://doi.org/10.1016/j.jhazmat.2020.124556

    Article  CAS  PubMed  Google Scholar 

  89. Tremellen K, Pearce K (2012) Dysbiosis of Gut Microbiota (DOGMA) – a novel theory for the development of polycystic ovarian syndrome. Med Hypotheses 79:104–112. https://doi.org/10.1016/j.mehy.2012.04.016

    Article  PubMed  Google Scholar 

  90. Hrncir T (2022) Gut microbiota dysbiosis: triggers, consequences, diagnostic and therapeutic options. Microorganisms 10:578. https://doi.org/10.3390/microorganisms10030578

    Article  PubMed  PubMed Central  Google Scholar 

  91. Vangay P, Ward T, Gerber JS, Knights D (2015) Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 17:553–564. https://doi.org/10.1016/j.chom.2015.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B, Zhang W, Weldon R, Auguste K, Yang L, Liu X, Chen L, Yang X, Zhu B, Cai J (2017) Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. https://doi.org/10.1186/s40168-016-0222-x

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shin N-R, Whon TW, Bae J-W (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33:496–503. https://doi.org/10.1016/j.tibtech.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  94. Lindell AE, Zimmermann-Kogadeeva M, Patil KR (2022) Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nat Rev Microbiol 20:431–443. https://doi.org/10.1038/s41579-022-00681-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Collins SL, Patterson AD (2020) The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharmaceutica Sinica B 10:19–32. https://doi.org/10.1016/j.apsb.2019.12.001

    Article  CAS  PubMed  Google Scholar 

  96. Claus SP, Swann JR (2013) Nutrimetabonomics: applications for nutritional sciences, with specific reference to gut microbial interactions. Annu Rev Food Sci Technol 4:381–399. https://doi.org/10.1146/annurev-food-030212-182612

    Article  CAS  PubMed  Google Scholar 

  97. Prasad N, Tripathi M, Shukla S, Ramteke PW, Chandra R (2018) Functional properties of heavy metal tolerant probiotic strains isolated from curd. Annual Research & Review in Biology 28(4):1–11. https://doi.org/10.9734/ARRB/2018/43480

    Article  Google Scholar 

  98. Costa C, Briguglio G, Giamb F, Catanoso R, Teodoro M, Caccamo D, Fenga C (2020) Association between oxidative stress biomarkers and PON and GST polymorphisms as a predictor for susceptibility to the effects of pesticides. Int J Mol Med. https://doi.org/10.3892/ijmm.2020.4541

    Article  PubMed  Google Scholar 

  99. Costa C, Briguglio G, Catanoso R, Giambò F, Polito I, Teodoro M, Fenga C (2020) New perspectives on cytokine pathways modulation by pesticide exposure. Current Opinion in Toxicology 19:99–104. https://doi.org/10.1016/j.cotox.2020.01.002

    Article  Google Scholar 

  100. Yang X-F, Yang S-C, Wen F-L, Feng L, Meng B, Hu H-Y, Wang B-L, Li J, Poulain AJ, Li P (2022) Impacts of mercury exposure levels and sources on the demethylation of methylmercury through human gut microbiota. Bull Environ Contam Toxicol 109:534–541. https://doi.org/10.1007/s00128-022-03569-5

    Article  CAS  PubMed  Google Scholar 

  101. Brabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP (2020) Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal. Heliyon 6:e03313. https://doi.org/10.1016/j.heliyon.2020.e03313

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bozack AK, Hall MN, Liu X, Ilievski V, Lomax-Luu AM, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Gamble MV (2019) Folic acid supplementation enhances arsenic methylation: results from a folic acid and creatine supplementation randomized controlled trial in Bangladesh. Am J Clin Nutr 109:380–391. https://doi.org/10.1093/ajcn/nqy148

    Article  PubMed  Google Scholar 

  103. Tikka C, Manthari RK, Ommati MM, Niu R, Sun Z, Zhang J, Wang J (2020) Immune disruption occurs through altered gut microbiome and NOD2 in arsenic induced mice: Correlation with colon cancer markers. Chemosphere 246:125791. https://doi.org/10.1016/j.chemosphere.2019.125791

    Article  CAS  PubMed  Google Scholar 

  104. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi S, Berenjian A, Ghasemi Y (2019) Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 8:92. https://doi.org/10.3390/foods8030092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhai Q, Qu D, Feng S, Yu Y, Yu L, Tian F, Zhao J, Zhang H, Chen W (2020) Oral supplementation of lead-intolerant intestinal microbes protects against lead (Pb) toxicity in mice. Front Microbiol. https://doi.org/10.3389/fmicb.2019.03161

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhou C, Xu P, Huang C, Liu G, Chen S, Hu G, Li G, Liu P, Guo X (2020) Effects of subchronic exposure of mercuric chloride on intestinal histology and microbiota in the cecum of chicken. Ecotoxicol Environ Saf 188:109920. https://doi.org/10.1016/j.ecoenv.2019.109920

    Article  CAS  PubMed  Google Scholar 

  107. Wang Y, Han J, Ren Q et al (2024) The involvement of lactic acid bacteria and their exopolysaccharides in the biosorption and detoxication of heavy metals in the gut. Biol Trace Elem Res 202:671–684. https://doi.org/10.1007/s12011-023-03693-1

    Article  CAS  PubMed  Google Scholar 

  108. Daisley BA, Monachese M, Trinder M, Bisanz JE, Chmiel JA, Burton JP, Reid G (2018) Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut Microbes 10:321–333. https://doi.org/10.1080/19490976.2018.1526581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Riasatian M, Mazloomi SM, Ahmadi A, Derakhshan Z, Rajabi S (2023) Benefits of fermented synbiotic soymilk containing Lactobacillus acidophilus, Bifidobacterium lactis, and inulin towards lead toxicity alleviation. Heliyon 9:e17518. https://doi.org/10.1016/j.heliyon.2023.e17518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Abdel-Megeed RM (2020) Probiotics: a promising generation of heavy metal detoxification. Biol Trace Elem Res 199:2406–2413. https://doi.org/10.1007/s12011-020-02350-1

    Article  CAS  PubMed  Google Scholar 

  111. Eggers S, Safdar N, Sethi AK, Suen G, Peppard PE, Kates AE, Skarlupka JH, Kanarek M, Malecki KMC (2019) Urinary lead concentration and composition of the adult gut microbiota in a cross-sectional population-based sample. Environ Int 133:105122. https://doi.org/10.1016/j.envint.2019.105122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mirza Alizadeh A, Hosseini H, Mohseni M, Eskandari S, Sohrabvandi S, Hosseini M, Tajabadi-Ebrahimi M, Mohammadi-Kamrood M, Nahavandi S (2021) Analytic and chemometric assessments of the native probiotic bacteria and inulin effects on bioremediation of lead salts. J Sci Food Agric 101:5142–5153. https://doi.org/10.1002/jsfa.11160

    Article  CAS  PubMed  Google Scholar 

  113. Madreseh S, Ghaisari HR, Hosseinzadeh S (2018) Effect of lyophilized, encapsulated Lactobacillus fermentum and lactulose feeding on growth performance, heavy metals, and trace element residues in rainbow trout (Oncorhynchus mykiss) tissues. Probiotics and Antimicrobial Proteins 11:1257–1263. https://doi.org/10.1007/s12602-018-9487-7

    Article  CAS  Google Scholar 

  114. Ismail B, Nampoothiri KM (2013) Molecular characterization of an exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510 and its efficacy to improve the texture of starchy food. J Food Sci Technol 51:4012–4018. https://doi.org/10.1007/s13197-013-0928-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Angelin J, Kavitha M (2020) Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol 162:853–865. https://doi.org/10.1016/j.ijbiomac.2020.06.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Trabelsi I, Slima SB, Chaabane H, Riadh BS (2015) Purification and characterization of a novel exopolysaccharides produced by Lactobacillus sp. Ca6. Int J Biol Macromol 74:541–546. https://doi.org/10.1016/j.ijbiomac.2014.12.045

    Article  CAS  PubMed  Google Scholar 

  117. Jia K, Tao X, Liu Z, Zhan H, He W, Zhang Z, Zeng Z, Wei H (2019) Characterization of novel exopolysaccharide of Enterococcus faecium WEFA23 from infant and demonstration of its in vitro biological properties. Int J Biol Macromol 128:710–717. https://doi.org/10.1016/j.ijbiomac.2018.12.245

    Article  CAS  PubMed  Google Scholar 

  118. Aarti C, Khusro A (2019) Functional and technological properties of exopolysaccharide producing autochthonous Lactobacillus plantarum strain AAS3 from dry fish based fermented food. LWT 114:108387. https://doi.org/10.1016/j.lwt.2019.108387

    Article  CAS  Google Scholar 

  119. Kanmani P, Suganya K, kumar RS, Yuvaraj N, Pattukumar V, Paari KA, Arul V, (2013) Synthesis and functional characterization of antibiofilm exopolysaccharide produced by Enterococcus faecium MC13 isolated from the gut of fish. Appl Biochem Biotechnol 169:1001–1015. https://doi.org/10.1007/s12010-012-0074-1

    Article  CAS  PubMed  Google Scholar 

  120. Liu T, Zhou K, Yin S, Liu S, Zhu Y, Yang Y, Wang C (2019) Purification and characterization of an exopolysaccharide produced by Lactobacillus plantarum HY isolated from home-made Sichuan Pickle. Int J Biol Macromol 134:516–526. https://doi.org/10.1016/j.ijbiomac.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  121. You X, Li Z, Ma K, Zhang C, Chen X, Wang G, Yang L, Dong M, Rui X, Zhang Q, Li W (2020) Structural characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus helveticus LZ-R-5. Carbohyd Polym 235:115977. https://doi.org/10.1016/j.carbpol.2020.115977

    Article  CAS  Google Scholar 

  122. Sungur T, Aslim B, Karaaslan C, Aktas B (2017) Impact of exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa). Anaerobe 47:137–144. https://doi.org/10.1016/j.anaerobe.2017.05.013

    Article  PubMed  Google Scholar 

  123. Xu Y, Cui Y, Wang X, Yue F, Shan Y, Liu B, Zhou Y, Yi Y, Lü X (2019) Purification, characterization and bioactivity of exopolysaccharides produced by Lactobacillus plantarum KX041. Int J Biol Macromol 128:480–492. https://doi.org/10.1016/j.ijbiomac.2019.01.117

    Article  CAS  PubMed  Google Scholar 

  124. Ayyash M, Abu-Jdayil B, Olaimat A, Esposito G, Itsaranuwat P, Osaili T, Obaid R, Kizhakkayil J, Liu S-Q (2020) Physicochemical, bioactive and rheological properties of an exopolysaccharide produced by a probiotic Pediococcus pentosaceus M41. Carbohyd Polym 229:115462. https://doi.org/10.1016/j.carbpol.2019.115462

    Article  CAS  Google Scholar 

  125. Ayyash M, Abu-Jdayil B, Itsaranuwat P, Galiwango E, Tamiello-Rosa C, Abdullah H, Esposito G, Hunashal Y, Obaid RS, Hamed F (2020) Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk. Int J Biol Macromol 144:938–946. https://doi.org/10.1016/j.ijbiomac.2019.09.171

    Article  CAS  PubMed  Google Scholar 

  126. Adesulu-Dahunsi AT, Jeyaram K, Sanni AI, Banwo K (2018) Production of exopolysaccharide by strains of Lactobacillus plantarumYO175 and OF101 isolated from traditional fermented cereal beverage. PeerJ 6:e5326. https://doi.org/10.7717/peerj.5326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Makino S, Sato A, Goto A, Nakamura M, Ogawa M, Chiba Y, Hemmi J, Kano H, Takeda K, Okumura K, Asami Y (2016) Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J Dairy Sci 99:915–923. https://doi.org/10.3168/jds.2015-10376

    Article  CAS  PubMed  Google Scholar 

  128. Biswas JK, Banerjee A, Rai MK, Rinklebe J, Shaheen SM, Sarkar SK, Dash MC, Kaviraj A, Langer U, Song H, Vithanage M, Mondal M, Niazi NK (2018) Exploring potential applications of a novel extracellular polymeric substance synthesizing bacterium (Bacillus licheniformis) isolated from gut contents of earthworm (Metaphire posthuma) in environmental remediation. Biodegradation 29:323–337. https://doi.org/10.1007/s10532-018-9835-z

    Article  PubMed  Google Scholar 

  129. Ljubic V, Milosevic M, Cvetkovic S, Stojanovic M, Novovic K, Dinic M, Popovic M (2022) The new exopolysaccharide produced by the probiotic strain L. reuteri B2: extraction, biological properties, and possible application for Ni2+ ion removal from the contaminated water. Biomass Convers Bior. https://doi.org/10.1007/s13399-022-03292-5

    Article  Google Scholar 

  130. Brdarić E, Soković Bajić S, Đokić J, Đurđić S, Ruas-Madiedo P, Stevanović M, Tolinački M, Dinić M, Mutić J, Golić N, Živković M (2021) Protective effect of an exopolysaccharide produced by Lactiplantibacillus plantarum BGAN8 against cadmium-induced toxicity in Caco-2 cells. Front Microbiol. https://doi.org/10.3389/fmicb.2021.759378

    Article  PubMed  PubMed Central  Google Scholar 

  131. Krishnamurthy M, Jayaraman Uthaya C, Thangavel M, Annadurai V, Rajendran R, Gurusamy A (2020) Optimization, compositional analysis, and characterization of exopolysaccharides produced by multi-metal resistant Bacillus cereus KMS3-1. Carbohyd Polym 227:115369. https://doi.org/10.1016/j.carbpol.2019.115369

    Article  CAS  Google Scholar 

  132. Tarabukina EB, Fatullaev EI, Filippov AP, Abzaeva KA (2018) Behavior of metal complexes of polyacrylic acid in solutions. Int J Polym Anal Charact 24:10–17. https://doi.org/10.1080/1023666x.2018.1514691

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Department of Biotechnology HPU Shimla for necessary facilities (Grant number: NMHS/2022-23/SG 81/01/280). All the facilities provided by the Department of Biotechnology, Summer Hill, Shimla, are duly acknowledged.

Funding

We acknowledge the financial assistance at various stages by CSIR to Ms. Pushpak Dahiya (Award letter no. 09/0237(15947)/2022-EMR-I) and National Mission on Himalayan Studies Project Management Unit (NMHS-PMU) MoEF&CC Govt. of India New Delhi for the financial support for this research.

Author information

Authors and Affiliations

Authors

Contributions

Pushpak Dahiya and Sangeeta Kumari: writing original draft. Manya Behl and Aakash Kashyap: investigation. Deeksha Kumari and Kalpana Thakur: visualisation. Mamta Devi and Neelam Kumari: data curation and formal analysis. Neelam Kaushik and Abhishek Walia: conceptualization and supervision. Arvind Kumar Bhatt and Ravi Kant Bhatia: review, editing, and fund acquisition.

Corresponding author

Correspondence to Ravi Kant Bhatia.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahiya, P., Kumari, S., Behl, M. et al. Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10281-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10281-9

Keywords

Navigation