Skip to main content

Advertisement

Log in

Synergistic Inhibitory Effect of Lactobacillus Cell Lysates and Butyrate on Poly I:C-Induced IL-8 Production in Human Intestinal Epithelial Cells

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Postbiotics include cell lysates (CLs), enzymes, cell wall fragments, and heat-killed bacteria derived from probiotics. Although postbiotics are increasingly being considered for their potential health-promoting properties, the effects of postbiotics on virus-mediated inflammatory responses in the intestine have not been elucidated. Hence, the present study aimed to examine whether CLs of Lactipantibacillus plantarum (LP CL) and Lacticaseibacillus rhamnosus GG (LR CL) could inhibit virus-mediated inflammatory responses in the human intestinal epithelial cell line HT-29 in vitro. Pretreatment with LP CL and LR CL significantly inhibited interleukin (IL)-8 production, which was induced by poly I:C, a synthetic analog of double-stranded RNA (dsRNA) viruses, at the mRNA and protein levels in HT-29 cells. However, peptidoglycans and heat-killed L. plantarum and L. rhamnosus GG did not effectively inhibit IL-8 production. LP CL and LR CL attenuated the poly I:C-induced phosphorylation of ERK and JNK and the activation of NF-κB, suggesting that these CLs could inhibit poly I:C-induced IL-8 production by regulating intracellular signaling pathways in HT-29 cells. Furthermore, among the short-chain fatty acids, butyrate enhanced the inhibitory effect of CLs on poly I:C-induced IL-8 production at the mRNA and protein levels in HT-29 cells, while acetate and propionate did not. Taken together, these results suggest that both LP CL and LR CL could act as potent effector molecules that can inhibit virus-mediated inflammatory responses and confer synergistic inhibitory effects with butyrate in human intestinal epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The dataset generated during and/or analyzed during in the current study are available from the corresponding author on reasonable request.

References

  1. Schrezenmeir J, de Vrese M (2001) Probiotics, prebiotics, and synbiotics−approaching a definition. Am J Clin Nutr 73:361s–364s

    Article  CAS  PubMed  Google Scholar 

  2. Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R (2021) Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front Immunol 12:178

    Article  Google Scholar 

  3. Zhang L, Li N, Caicedo R, Neu J (2005) Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-alpha-induced interleukin-8 production in Caco-2 cells. J Nutr 135:1752–1756

    Article  CAS  PubMed  Google Scholar 

  4. Duary RK, Batish VK, Grover S (2014) Immunomodulatory activity of two potential probiotic strains in LPS-stimulated HT-29 cells. Genes Nutr 9:398

    Article  PubMed  PubMed Central  Google Scholar 

  5. Amimo JO, Raev SA, Chepngeno J, Mainga AO, Guo Y, Saif L, Vlasova AN (2021) Rotavirus interactions with host intestinal epithelial cells. Front Immunol 12:793841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Casola A, Estes MK, Crawford SE, Ogra PL, Ernst PB, Garofalo RP, Crowe SE (1998) Rotavirus infection of cultured intestinal epithelial cells induces secretion of CXC and CC chemokines. Gastroenterology 114:947–955

    Article  CAS  PubMed  Google Scholar 

  7. Casola A, Garofalo RP, Crawford SE, Estes MK, Mercurio F, Crowe SE, Brasier AR (2002) Interleukin-8 gene regulation in intestinal epithelial cells infected with rotavirus: role of viral-induced IκB kinase activation. Virology 298:8–19

    Article  CAS  PubMed  Google Scholar 

  8. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R (2011) Regulation of inflammation by short chain fatty acids. Nutrients 3:858–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van der Hee B, Wells JM (2021) Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol 29:700–712

    Article  PubMed  Google Scholar 

  10. Clausen MR, Mortensen PB (1994) Kinetic studies on the metabolism of short-chain fatty acids and glucose by isolated rat colonocytes. Gastroenterology 106:423–432

    Article  CAS  PubMed  Google Scholar 

  11. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064

    Article  CAS  PubMed  Google Scholar 

  12. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJ, Faber KN, Hermoso MA (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, Mellinger JD, Smith SB, Digby GJ, Lambert NA (2009) GPR109A is a G-protein–coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 69:2826–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng S, Zhang H, Liu R, Huang CL, Li H, Deng ZY, Tsao R (2021) Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects?–New insights from a TNF-α-induced Caco-2 cell model. Food Res Int 39:109833

    Article  Google Scholar 

  15. Kothari D, Patel S, Kim SK (2019) Probiotic supplements might not be universally-effective and safe: a review. Biomed Pharmacother 111:537–547

    Article  CAS  PubMed  Google Scholar 

  16. Nataraj BH, Ali SA, Behare PV, Yadav H (2020) Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb Cell Fact 19:168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barros CP, Guimarães JT, Esmerino EA, Duarte MCK, Silva MC, Silva R, Ferreira BM, Sant’Ana AS, Freitas MQ, Cruz AG, (2020) Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Curr Opin Food Sci 32:1–8

    Article  Google Scholar 

  18. Ohland CL, Macnaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298:G807–G819

    Article  CAS  PubMed  Google Scholar 

  19. Kuhner D, Stahl M, Demircioglu DD, Bertsche U (2014) From cells to muropeptide structures in 24h: peptidoglycan mapping by UPLC-MS. Sci Rep 4:7494

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Martínez-Maqueda D, Miralles B, Recio I (2015) HT29 cell line. In: Verhoeckx K, Cotter P, López-Expósito I et al (eds) The impact of food bioactives on health. Springer, pp 113–146

    Google Scholar 

  21. Grouls M, van der Zande M, de Haan L, Bouwmeester H (2022) Responses of increasingly complex intestinal epithelium in vitro models to bacterial toll-like receptor agonists. Toxicol In Vitro 79:105280

    Article  CAS  PubMed  Google Scholar 

  22. Bugge M, Bergstrom B, Eide OK, Solli H, Kjonstad IF, Stenvik J, Espevik T, Nilsen NJ (2017) Surface Toll-like receptor 3 expression in metastatic intestinal epithelial cells induces inflammatory cytokine production and promotes invasiveness. J Biol Chem 292:15408–15425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lever AR, Park H, Mulhern TJ, Jackson GR, Comolli JC, Borenstein JT, Hayden PJ, Prantil-Baun R (2015) Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model. Physiol Rep 3:e12334

    Article  PubMed  PubMed Central  Google Scholar 

  24. Macpherson C, Audy J, Mathieu O, Tompkins TA (2014) Multistrain probiotic modulation of intestinal epithelial cells’ immune response to a double-stranded RNA ligand, poly(i.c). Appl Environ Microbiol 80:1692–1700

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EM, Sanders ME, Shamir R, Swann JR, Szajewska H (2021) The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol 18:1–19

    Google Scholar 

  26. Gupta S, Sharma AK, Shastri V, Madhu MK, Sharma VK (2017) Prediction of anti-inflammatory proteins/peptides: an insilico approach. J Transl Med 15:7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, Franco MA, Greenberg HB, O’Ryan M, Kang G, Desselberger U, Estes MK (2017) Rotavirus infection Nat Rev Dis Primers 3:17083

    Article  PubMed  Google Scholar 

  28. Rollo EE, Kumar KP, Reich NC, Cohen J, Angel J, Greenberg HB, Sheth R, Anderson J, Oh B, Hempson SJ (1999) The epithelial cell response to rotavirus infection. J Immunol 163:4442–4452

    Article  CAS  PubMed  Google Scholar 

  29. Eckmann L, Jung HC, Schürer-Maly C, Panja A, Morzycka-Wroblewska E, Kagnoff MF (1993) Differential cytokine expression by human intestinal epithelial cell lines: regulated expression of interleukin 8. Gastroenterology 105:1689–1697

    Article  CAS  PubMed  Google Scholar 

  30. Kucharzik T, Hudson JT 3rd, Lugering A, Abbas JA, Bettini M, Lake JG, Evans ME, Ziegler TR, Merlin D, Madara JL, Williams IR (2005) Acute induction of human IL-8 production by intestinal epithelium triggers neutrophil infiltration without mucosal injury. Gut 54:1565–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khabar KS, Al-Zoghaibi F, Al-Ahdal MN, Murayama T, Dhalla M, Mukaida N, Teha M, Al-Sedairy ST, Siddiqui Y, Kessie G, Matsushima K (1997) The alpha chemokine, interleukin 8, inhibits the antiviral action of interferon α. J Exp Med 186:1077–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou C, Ma FZ, Deng XJ, Yuan H, Ma HS (2008) Lactobacilli inhibit interleukin-8 production induced by Helicobacter pylori lipopolysaccharide-activated Toll-like receptor 4. World J Gastroenterol 14:5090–5095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren DY, Li C, Qin YQ, Yin RL, Du SW, Ye F, Liu HF, Wang MP, Sun Y, Li X, Tian MY, Jin NY (2013) Lactobacilli reduce chemokine IL-8 production in response to TNF-α and Salmonella challenge of Caco-2 cells. Biomed Res Int 2013:925219

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ma D, Forsythe P, Bienenstock J (2004) Live Lactobacillus rhamnosus is essential for the inhibitory effect on tumor necrosis factor alpha-induced interleukin-8 expression. Infect Immun 72:5308–5314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Noh SY, Kang SS, Yun CH, Han SH (2015) Lipoteichoic acid from Lactobacillus plantarum inhibits Pam2CSK4-induced IL-8 production in human intestinal epithelial cells. Mol Immunol 64:183–189

    Article  CAS  PubMed  Google Scholar 

  36. Kim KW, Kang SS, Woo SJ, Park OJ, Ahn KB, Song KD, Lee HK, Yun CH, Han SH (2017) Lipoteichoic acid of probiotic Lactobacillus plantarum attenuates poly I:C-induced IL-8 production in porcine intestinal epithelial cells. Front Microbiol 8:1827

    Article  PubMed  PubMed Central  Google Scholar 

  37. Broom O, Widjaya B, Troelsen J, Olsen J, Nielsen O (2009) Mitogen activated protein kinases: a role in inflammatory bowel disease? Clin Exp Immunol 158:272–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jijon HB, Walker J, Hoentjen F, Diaz H, Ewaschuk J, Jobin C, Madsen KL (2005) Adenosine is a negative regulator of NF-kappaB and MAPK signaling in human intestinal epithelial cells. Cell Immunol 237:86–95

    Article  CAS  PubMed  Google Scholar 

  39. Dauletbaev N, Eklove D, Mawji N, Iskandar M, Di Marco S, Gallouzi IE, Lands LC (2011) Down-regulation of cytokine-induced interleukin-8 requires inhibition of p38 mitogen-activated protein kinase (MAPK) via MAPK phosphatase 1-dependent and -independent mechanisms. J Biol Chem 286:15998–16007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Funakoshi M, Sonoda Y, Tago K, Tominaga S-i, Kasahara T (2001) Differential involvement of p38 mitogen-activated protein kinase and phosphatidyl inositol 3-kinase in the IL-1-mediated NF-κB and AP-1 activation. Int Immunopharmacol 1:595–604

    Article  CAS  PubMed  Google Scholar 

  41. Dong G, Chen Z, Li ZY, Yeh NT, Bancroft CC, Van Waes C (2001) Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res 61:5911–5918

    CAS  PubMed  Google Scholar 

  42. Elliott CL, Allport VC, Loudon JA, Wu GD, Bennett PR (2001) Nuclear factor-kappa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Mol Hum Reprod 7:787–790

    Article  CAS  PubMed  Google Scholar 

  43. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ratajczak W, Ryl A, Mizerski A, Walczakiewicz K, Sipak O, Laszczynska M (2019) Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol 66:1–12

    CAS  PubMed  Google Scholar 

  45. Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW, Giardina C (2000) The luminal short-chain fatty acid butyrate modulates NF-κB activity in a human colonic epithelial cell line. Gastroenterology 118:724–734

    Article  CAS  PubMed  Google Scholar 

  46. Weng M, Walker WA, Sanderson IR (2007) Butyrate regulates the expression of pathogen-triggered IL-8 in intestinal epithelia. Pediatr Res 62:542–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li M, van Esch B, Henricks PAJ, Garssen J, Folkerts G (2018) Time and concentration dependent effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor alpha-induced endothelial activation. Front Pharmacol 9:233

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1A2C1010010).

Author information

Authors and Affiliations

Authors

Contributions

SWP and SSK conceived and designed the experiments. SWP, YHC, JYG, and GAK performed experiments. SWP and YHC analyzed the data. JYG performed statistical analysis. SWP and SSK wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Seok-Seong Kang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 659 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.W., Choi, Y.H., Gho, J.Y. et al. Synergistic Inhibitory Effect of Lactobacillus Cell Lysates and Butyrate on Poly I:C-Induced IL-8 Production in Human Intestinal Epithelial Cells. Probiotics & Antimicro. Prot. 16, 1–12 (2024). https://doi.org/10.1007/s12602-023-10042-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-023-10042-0

Keywords

Navigation