Skip to main content

Advertisement

Log in

Effects of Potential Probiotic Enterococcus casseliflavus (EC-001) on Growth Performance, Immunity, and Resistance to Aeromonas hydrophila Infection in Common Carp (Cyprinus carpio)

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The effects of different levels of dietary Enterococcus casseliflavus (EC-001), as a potential probiotic, were investigated on the growth performance, hemato-biochemical parameters, immune responses, and resistance to Aeromonas hydrophila infection in common carp (Cyprinus carpio) fingerlings. Accordingly, fish (N = 720; 12.0 ± 0.5 g) were distributed into four treatments receiving different dietary levels of E. casseliflavus, EC-001 (0 [control], 1 × 107, 108, and 109 CFU g−1 feed), for 8 weeks. The fish fed with a diet containing 109 CFU g−1 showed the highest weight gain and specific growth rate, along with the lowest feed conversion ratio, compared with the control group (P < 0.05). Red and white blood cells, hemoglobin, hematocrit, neutrophils, and monocytes significantly increased in the fish fed with 1 × 108 and 109 CFU g−1 (P < 0.05). Dietary inclusion of 1 × 108 and 109 CFU g−1 significantly increased serum total protein, albumin, and immunoglobulin content (P < 0.05). Feeding the fish with 1 × 109 CFU g−1 resulted in a significant increase in serum and skin mucus lysozyme activity compared with the other groups (P < 0.05). Complement component 3 and skin mucus protease activity were also significantly higher in all the fish treated with dietary E. casseliflavus (EC-001) compared with the control group (P < 0.05). The cumulative mortality in the treated fish was lower (ranging from 10 to 22%) than the control group (31%) after challenging the fish with A. hydrophila infection, while the fish fed with E. casseliflavus (EC-001) at 1 × 109 CFU g−1 exhibited the lowest mortality rate (P < 0.05). In conclusion, our results revealed the potential probiotic effects of E. casseliflavus (EC-001) for enhancing growth performance, immunity, and disease resistance of common carp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ashraf SA, Adnan M, Patel M, Siddiqui AJ, Sachidanandan M, Snoussi M, Hadi S (2020) Fish-based bioactives as potent nutraceuticals: exploring the therapeutic perspective of sustainable food from the sea. Mar Drugs 18(5):265. https://doi.org/10.3390/md18050265

    Article  CAS  PubMed Central  Google Scholar 

  2. Soltani M, Lymbery A, Song SK, Hosseini Shekarabi P (2019) Adjuvant effects of medicinal herbs and probiotics for fish vaccines. Rev Aquac 11(4):1325–41. https://doi.org/10.1111/raq.12295

    Article  Google Scholar 

  3. Van Hai N (2015) Research findings from the use of probiotics in tilapia aquaculture: a review. Fish Shellfish Immunol 45(2):592–597. https://doi.org/10.1016/j.fsi.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  4. Elsabagh M, Mohamed R, Moustafa EM, Hamza A, Farrag F, Decamp O, Dawood MAO, Eltholth M (2018) Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquacult Nutr 24(6):1613–1622. https://doi.org/10.1111/anu.12797

    Article  CAS  Google Scholar 

  5. Dawood MA, Koshio S (2016) Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review. Aquaculture 454:243–251. https://doi.org/10.1016/j.aquaculture.2015.12.033

    Article  CAS  Google Scholar 

  6. Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RT, Bøgwald J, Castex M, Ringø E (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302:1–18. https://doi.org/10.1016/j.aquaculture.2010.02.007

    Article  Google Scholar 

  7. Soltani M, Badzohreh G, Mirzargar S, Farhangi M, Hosseini Shekarabi SP, Lymbery A (2019) Growth behavior and fatty acid production of probiotics, Pediococcus acidilactici and Lactococcus lactis, at different concentrations of fructooligosaccharide: studies validating clinical efficacy of selected synbiotics on growth performance of Caspian roach (Rutilus frisii kutum) fry. Probiotics Antimicrob Proteins 11:765–773. https://doi.org/10.1007/s12602-018-9462-3

    Article  CAS  PubMed  Google Scholar 

  8. Ringo E, Hossein S, Ghosh K, Doan HV, Beck BR, Song S (2018) Lactic acid bacteria in finfish–an update. Front Microbiol 9:1818. https://doi.org/10.3389/fmicb.2018.01818

    Article  PubMed  PubMed Central  Google Scholar 

  9. Carnevali O, Sun Y, Merrifield DL, Zhou Z, Picchietti S (2014) Probiotic applications in temperate and warm water fish species. In: Merrifield D, Ringø E (eds) Aquaculture nutrition gut health, probiotics and prebiotics. Wiley, Chichester, pp 253–289

    Google Scholar 

  10. Rodriguez-Estrada U, Satoh S, Haga Y, Fushimi H, Sweetman J (2013) Effects of inactivated Enterococcus faecalis and mannan oligosaccharide and their combination on growth, immunity, and disease protection in rainbow trout. N Am J Aquac 75:416–428. https://doi.org/10.1080/15222055.2013.799620

    Article  Google Scholar 

  11. Chang Chang CI, Liu WY (2002) An evaluation of two probiotic bacterial strains, Enterococcus faecium SF68 and Bacillus toyoi, for reducing edwardsiellosis in cultured European eel, Anguilla anguilla L. J Fish Dis 25(5):311–315. https://doi.org/10.1046/j.1365-2761.2002.00365.x

    Article  Google Scholar 

  12. Lazado CC, Caipang CMA, Estante EG (2015) Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish Shellfish Immunol 45:2–12. https://doi.org/10.1016/j.fsi.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  13. Kothari D, Patel S, Kim SK (2019) Probiotic supplements might not be universally-effective and safe: a review. Biomed Pharmacother 111:537–547. https://doi.org/10.1016/j.biopha.2018.12.104

    Article  CAS  PubMed  Google Scholar 

  14. Bogut I, Milaković Z, Brkić S, Novoselić D, Bukvić Ž (2000) Effects of Enterococcus faecium on the growth rate and content of intestinal microflora in sheat fish (Silurus glanis). Vet Med 45(4):107–109. https://scinapse.io/papers/1730165822

  15. Swain SM, Singh C, Arul V (2009) Inhibitory activity of probiotics Streptococcus phocae PI80 and Enterococcus faecium MC13 against vibriosis in shrimp Penaeus monodon. World J Microbiol Biotechnol 25(4):697–703. https://doi.org/10.1007/s11274-008-9939-4

    Article  Google Scholar 

  16. Kim YR, Kim EY, Choi SY, Hossain MT, Oh R, Heo WS, Lee JM, Cho YC, Kong IS (2012) Effect of a probiotic strain, Enterococcus faecium, on the immune responses of olive flounder (Paralichthys olivaceus). J Microbiol Biotechnol 22(4):526–529. https://doi.org/10.4014/jmb.1108.08047

    Article  CAS  PubMed  Google Scholar 

  17. Sun Y-Z, Yang HL, Ma R-L, Song K, Li J-S (2012) Effect of Lactococcus lactis and Enterococcus faecium on growth performance, digestive enzymes and immune response of grouper Epinephelus coioides. Aquacult Nutr 18(3):281–289. https://doi.org/10.1111/j.1365-2095.2011.00894.x

    Article  CAS  Google Scholar 

  18. Safari R, Adel M, Lazado CC, Caipang CMA, Dadar M (2016) Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish Shellfish Immunol 52:198–205. https://doi.org/10.1016/j.fsi.2016.03.020

    Article  CAS  PubMed  Google Scholar 

  19. Adnan M, Patel M, Hadi S (2017) Functional and health promoting inherent attributes of Enterococcus hirae F2 as a novel probiotic isolated from the digestive tract of the freshwater fish Catla catla. PeerJ 5:3085. https://doi.org/10.7717/peerj.3085

    Article  CAS  Google Scholar 

  20. Allameh S, Ringø E, Yusoff F, Daud H, Ideris A (2017) Dietary supplement of Enterococcus faecalis on digestive enzyme activities, short-chain fatty acid production, immune system response and disease resistance of Javanese carp (Puntius gonionotus, Bleeker 1850). Aquacult Nutr 23(2):331–338. https://doi.org/10.1111/anu.12397

    Article  CAS  Google Scholar 

  21. Alshammari E, Patel M, Sachidanandan M, Kumar P, Adnan M (2019) Potential evaluation and health fostering intrinsic traits of novel probiotic strain Enterococcus durans F3 isolated from the gut of fresh water fish Catla catla. Food Sci Anim Resour 39(5):844. https://doi.org/10.5851/kosfa.2019.e57

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li C, Zhang B, Liu C, Zhou H, Wang X, Mai K, He G (2020) Effects of dietary raw or Enterococcus faecium fermented soybean meal on growth, antioxidant status, intestinal microbiota, morphology, and inflammatory responses in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. https://doi.org/10.1016/j.fsi.2020.02.070

  23. Tarkhani R, Imani A, Hoseinifar SH, Moghanlou KS, Manaffar R (2020) The effects of host-associated Enterococcus faecium CGMCC1. 2136 on serum immune parameters, digestive enzymes activity and growth performance of the Caspian roach (Rutilus rutilus caspicus) fingerlings. Aquaculture 519:734741. https://doi.org/10.1016/j.aquaculture.2019.734741

  24. Wang Y-B, Tian ZQ, Yao JT, Li WF (2008) Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture 277(3–4):203–207. https://doi.org/10.1016/j.aquaculture.2008.03.007

    Article  Google Scholar 

  25. Jackson CR, Fedorka-Cray PJ, Barrett JB (2004) Use of a genus-and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol 42:3558–3565. https://doi.org/10.1128/JCM.42.8.3558-3565.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Panigrahi A, Kiron V, Satoh S, Hirono I, Kobayashi T, Sugita H, Puangkaew J, Aoki T (2007) Immune modulation and expression of cytokine genes in rainbow trout Oncorhynchus mykiss upon probiotic feeding. Dev Comp Immunol 31(4):372–382. https://doi.org/10.1016/j.dci.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  27. Rashmeei M, Shekarabi SPH, Mehrgan MS, Paknejad H (2020) Stimulatory effect of dietary chasteberry (Vitex agnus-castus) extract on immunity, some immune-related gene expression, and resistance against Aeromonas hydrophila infection in goldfish (Carassius auratus). Fish Shellfish Immunol 107:129–136. https://doi.org/10.1016/j.fsi.2020.09.037

    Article  CAS  PubMed  Google Scholar 

  28. Blaxhall PC, Daisley KW (1973) Routine haematological methods for use with fish blood. J Fish Biol 5(6):771–781. https://doi.org/10.1111/j.1095-8649.1973.tb04510.x

    Article  Google Scholar 

  29. Siwicki A, Anderson D (2000) Nonspecific defense mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. FAO project GCP/INT/JPA, IFI, Olsztyn, Poland, pp. 105–112

  30. Ellis A, Stolen J, Fletcher T, Anderson D, Robertson B, Van Muiswinkel W (1990) Lysozyme assay in techniques in fish immunology. Tech Fish Immunol SOS Publications, Fair Haven, USA

    Google Scholar 

  31. Balasubramanian S, Gunasekaran G, Baby Rani P, Arul Prakash A, Prakash M, Senthil Raja J (2013) A study on the antifungal properties of skin mucus from selected fresh water fishes. Golden Res Thought 2:23–29. https://doi.org/10.9780/2231-5063/292013/1646

    Article  Google Scholar 

  32. Sheikhzadeh N, Heidarieh M, Pashaki AK, Nofouzi K, Farshbafi MA, Akbari M (2012) Hilyses®, fermented Saccharomyces cerevisiae, enhances the growth performance and skin non-specific immune parameters in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 32(6):1083–1087. https://doi.org/10.1016/j.fsi.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  33. de Castro A, Montaño A, Casado FJ, Sánchez AH, Rejano L (2002) Utilization of Enterococcus casseliflavus and Lactobacillus pentosus as starter cultures for Spanish-style green olive fermentation. Food Microbiol 19(6):637–644. https://doi.org/10.1006/fmic.2002.0466

    Article  CAS  Google Scholar 

  34. Guillier L, Stahl V, Hezard B, Notz E, Briandet R (2008) Modelling the competitive growth between Listeria monocytogenes and biofilm microflora of smear cheese wooden shelves. Int J Food Microbiol 128(1):51–57. https://doi.org/10.1016/j.ijfoodmicro.2008.06.028

    Article  CAS  PubMed  Google Scholar 

  35. Hanchi H, Mottawea W, Sebei K, Hammami R (2018) The genus Enterococcus: between probiotic potential and safety concerns—an update. Front Microbiol 9:1791. https://doi.org/10.3389/fmicb.2018.01791

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Gong C, Jiang X (2011) Inhibitory effects of enterococci on the production of hydrogen sulfide by hydrogen sulfide–producing bacteria in raw meat. J Appl Microbiol 111(1):83–92. https://doi.org/10.1111/j.1365-2672.2011.05034.x

    Article  CAS  PubMed  Google Scholar 

  37. Ogier JC, Serror P (2008) Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol 126(3):291–301. https://doi.org/10.1016/j.ijfoodmicro.2007.08.017

    Article  CAS  PubMed  Google Scholar 

  38. Sabia C, de Niederhäusern S, Messi P, Manicardi G, Bondi M (2003) Bacteriocin-producing Enterococcus casseliflavus IM 416K1, a natural antagonist for control of Listeria monocytogenes in Italian sausages (“cacciatore”). Int J Food Microbiol 87(1–2):173–179. https://doi.org/10.1016/S0168-1605(03)00043-6

    Article  CAS  PubMed  Google Scholar 

  39. Carrizo SL, de Oca CEM, Laiño JE, Suarez NE, Vignolo G, Leblanc JG, Rollán G (2016) Ancestral Andean grain quinoa as source of lactic acid bacteria capable to degrade phytate and produce B-group vitamins. Food Res Int 89:488–494. https://doi.org/10.1016/j.foodres.2016.08.013

    Article  CAS  PubMed  Google Scholar 

  40. Dantur KI, Enrique R, Welin B, Castagnaro AP (2015) Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. Amb Express 5(1):15. https://doi.org/10.1186/s13568-015-0101-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li J, Tang X, Zhao J, Chen S, Wang S, Shao T (2020) Improvement of fermentation quality and cellulose convertibility of Napier grass silage by inoculation of cellulolytic bacteria from Tibetan yak (Bos grunniens). J Appl Microbiol. https://doi.org/10.1111/jam.14917

    Article  PubMed  PubMed Central  Google Scholar 

  42. Faggio C, Fedele G, Arfuso F, Panzera M, Fazio F (2014) Haematological and biochemical response of Mugil cephalus after acclimation to captivity. Cah Biol Mar 55(1):31–36

  43. Paknejad H, Shekarabi SPH, Mehrgan MS, Hajimoradloo A, Khorshidi Z, Rastegari S (2020) Dietary peppermint (Mentha piperita) powder affects growth performance, hematological indices, skin mucosal immune parameters, and expression of growth and stress-related genes in Caspian roach (Rutilus caspicus). Fish Physiol Biochem 46(5):1883–1895. https://doi.org/10.1007/s10695-020-00839-z

    Article  CAS  PubMed  Google Scholar 

  44. Ghiasi M, Binaii M, Naghavi A, Rostami HK, Nori H, Amerizadeh A (2018) Inclusion of Pediococcus acidilactici as probiotic candidate in diets for beluga (Huso huso) modifies biochemical parameters and improves immune functions. Fish Physiol Biochem 44(4):1099–1107. https://doi.org/10.1007/s10695-018-0497-x

    Article  CAS  PubMed  Google Scholar 

  45. Mohapatra S, Chakraborty T, Prusty AK, Kumar K, Prasad KP, Mohanta KN (2012) Fenvalerate induced stress mitigation by dietary supplementation of multispecies probiotic mixture in a tropical freshwater fish, Labeo rohita (Hamilton). Pestic Biochem Physiol 104(1):28–37. https://doi.org/10.1016/j.pestbp.2012.06.006

    Article  CAS  Google Scholar 

  46. Nayak S (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29(1):2–14. https://doi.org/10.1016/j.fsi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  47. Ahmadifar E, Sadegh TH, Dawood MA, Dadar M, Sheikhzadeh N (2020) The effects of dietary Pediococcus pentosaceus on growth performance, hemato-immunological parameters and digestive enzyme activities of common carp (Cyprinus carpio). Aquaculture 516:734656. https://doi.org/10.1016/j.aquaculture.2019.734656

    Article  CAS  Google Scholar 

  48. Valiallahi J, Pourabasali M, Janalizadeh E, Bucio A (2018) Use of Lactobacillus for improved growth and enhanced biochemical, hematological, and digestive enzyme activity in common carp at Mazandaran, Iran. N Am J Aquac 80(2):206–215. https://doi.org/10.1002/naaq.10027

    Article  Google Scholar 

  49. Ghodratizadeh S, Farhoudi M, Habibian R (2011) Effects of addition of Saccharomyces cervisae and Bacillus subtilis in diet on selected hematological and biochemical parameters in common carp (Cyprinus carpio). World J Fish Mar Sci 3(1):96-99. https://www.cabdirect.org/cabdirect/abstract/20123365751

  50. Firouzbakhsh F, Noori F, Khalesi MK, Jani-Khalili K (2011) Effects of a probiotic, protexin, on the growth performance and hematological parameters in the Oscar (Astronotus ocellatus) fingerlings. Fish Physiol Biochem 37(4):833–842. https://doi.org/10.1007/s10695-011-9481-4

    Article  CAS  PubMed  Google Scholar 

  51. Sharifuzzaman S, Austin B (2010) Kocuria SM1 controls vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 108(6):2162–2170. https://doi.org/10.1111/j.1365-2672.2009.04618.x

    Article  CAS  PubMed  Google Scholar 

  52. Newaj-Fyzul A, Adesiyun AA, Mutani A, Ramsubhag A, Brunt J, Austin B (2007) Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 103(5):1699–1706. https://doi.org/10.1111/j.1365-2672.2007.03402.x

    Article  CAS  PubMed  Google Scholar 

  53. Saurabh S, Sahoo P (2008) Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39(3):223–239. https://doi.org/10.1111/j.1365-2109.2007.01883.x

    Article  CAS  Google Scholar 

  54. Magnadottir B (2010) Immunological control of fish diseases. Mar Biotechnol. 12(4):361–379. https://doi.org/10.1007/s10126-010-9279-x

    Article  CAS  Google Scholar 

  55. Ngugi CC, Oyoo-Okoth E, Mugo-Bundi J, Orina PS, Chemoiwa EJ, Aloo PA (2015) Effects of dietary administration of stinging nettle (Urtica dioica) on the growth performance, biochemical, hematological and immunological parameters in juvenile and adult Victoria Labeo (Labeo victorianus) challenged with Aeromonas hydrophila. Fish Shellfish Immunol 44(2):533–541. https://doi.org/10.1016/j.fsi.2015.03.025

    Article  CAS  PubMed  Google Scholar 

  56. Abarike A, ED, Cai J, Lu Y, Yu H, Chen L, Jian J, Tang J, Jun L, Kuebutornye FK, (2018) Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 82:229–238. https://doi.org/10.1016/j.fsi.2018.08.037

    Article  CAS  PubMed  Google Scholar 

  57. Ashouri G, Soofiani NM, Hoseinifar SH, Jalali SAH, Morshedi V, Van Doan H, Mozanzadeh MT (2018) Combined effects of dietary low molecular weight sodium alginate and Pediococcus acidilactici MA18/5M on growth performance, haematological and innate immune responses of Asian sea bass (Lates calcalifer) juveniles. Fish Shellfish Immunol 79:34–41. https://doi.org/10.1016/j.fsi.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  58. Patel M, Ashraf MS, Siddiqui AJ, Ashra SA, Sachidanandan M, Snoussi M, Adnan M, Hadi S (2020) Profiling and role of bioactive molecules from puntius sophore (freshwater/brackish fish) skin mucus with its potent antibacterial, antiadhesion, and antibiofilm activities. Biomolecules 10(6):920. https://doi.org/10.3390/biom10060920

    Article  CAS  PubMed Central  Google Scholar 

  59. Lazado CC, Caipang CMA (2014) Mucosal immunity and probiotics in fish. Fish Shellfish Immunol 39(1):78–89. https://doi.org/10.1016/j.fsi.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  60. Uribe C, Folch H, Enríquez R, Moran G (2011) Innate and adaptive immunity in teleost fish: a review. Vet Med 56(10):486-503-503

  61. Saleh AA, Kirrella AA, Dawood MAO, Ebeid TA (2019) Effect of dietary inclusion of cumin seed oil on the performance, egg quality, immune response and ovarian development in laying hens under high ambient temperature. J Anim Physiol Anim Nutr 103(6):1810–1817. https://doi.org/10.1111/jpn.13206

    Article  CAS  Google Scholar 

  62. Devi G, Harikrishnan R, Paray BA, Al-Sadoon MK, Hoseinifar SH, Balasundaram C (2019) Effect of symbiotic supplemented diet on innate-adaptive immune response, cytokine gene regulation and antioxidant property in Labeo rohita against Aeromonas hydrophila. Fish Shellfish Immunol 89:687–700. https://doi.org/10.1016/j.fsi.2019.04.036

    Article  CAS  PubMed  Google Scholar 

  63. Kong W, Huang C, Tang Y, Zhang D, Wu Z, Chen X (2017) Effect of Bacillus subtilis on Aeromonas hydrophila-induced intestinal mucosal barrier function damage and inflammation in grass carp (Ctenopharyngodon idella). Sci Rep 7(1):1588. https://doi.org/10.1038/s41598-017-01336-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gatesoupe F (1999) The use of probiotics in aquaculture. Aquaculture 180:147–165. https://doi.org/10.1016/S0044-8486(99)00187-8

    Article  Google Scholar 

Download references

Acknowledgements

The assistance from the staff in Fisheries Laboratory (Zakarya Razi Laboratory Complex, Science and Research Branch University, Tehran, Iran) and Abzi Exir Kowsar Company (Tehran, Iran) is greatly appreciated. This work was partially supported by the University of Tehran and the Science and Research Branch of the Islamic Azad University, Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Pezhman Hosseini Shekrabi.

Ethics declarations

Ethical Approval

All the experimental studies included in this work have been conducted according to the standard guidelines for the care and use of animals for scientific purposes, and the procedures were approved (approval number 290) by the Committee of Research and Technology Deputy at Science and Research Branch University (Tehran, Iran) on June 24, 2019.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, H., Shekrabi, S.P.H., Soltani, M. et al. Effects of Potential Probiotic Enterococcus casseliflavus (EC-001) on Growth Performance, Immunity, and Resistance to Aeromonas hydrophila Infection in Common Carp (Cyprinus carpio). Probiotics & Antimicro. Prot. 13, 1316–1325 (2021). https://doi.org/10.1007/s12602-021-09771-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09771-x

Keywords

Navigation