Skip to main content
Log in

Safety Evaluation and In vivo Strain-Specific Functionality of Bacillus Strains Isolated from Korean Traditional Fermented Foods

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Unveiling and understanding differences in physiological features below the species level may serve as an essential fast-screening tool for selecting strains that can promote a specific probiotic effect. To study the intra-species diversity of Bacillus, a genus with a wide range of enzyme activities and specificity, 190 Bacillus strains were isolated from traditional Korean fermented food products. Altogether, in the preliminary safety screening, 8 of these strains were found negative for lecithinase and hemolysis activity and were selected for further investigations. On the basis of different levels of enzyme functionalities (high or low proteolytic, amylolytic, and lipolytic (PAL) activities), two Bacillus subtilis strains were selected for an in vivo study. Each of the two strains was separately administered at a level of 1 × 108 CFU per day to C57BL/6 mice that were fed 60% high-fat diet ad libitum for 8 weeks, while Xenical, an anti-obesity drug, was used as a positive control in the experimental setup. B. subtilis M34 and B. subtilis GS40a with low and high amylolytic activities, respectively, induced significantly different and contrasting physiological effects. The production of short-chain fatty acids appeared to be closely associated with a shift in the gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. FAO/WHO (2002) Food and Agriculture Organization and World Health Organization. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO Expert Consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria

  2. Mahoney R, Weeks R, Zheng T, Huang Q, Dai W, Cao Y, Liu G, Guo Y, Chistyakov V, Chikindas ML (2019) Evaluation of an industrial soybean byproduct for the potential development of a probiotic animal feed additive with Bacillus species. Probiotics Antimicrob Proteins 2019:1–6. https://doi.org/10.1007/s12602-019-09619-5

    Article  CAS  Google Scholar 

  3. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220. https://doi.org/10.1016/j.fm.2010.03.007

    Article  PubMed  Google Scholar 

  4. Algburi A, Volski A, Cugini C, Walsh E, Chistyakov V, Mazanko M, Bren A, Dicks L, Chikindas M (2016) Safety properties and probiotic potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. Adv Microbiol 06:432–452. https://doi.org/10.4236/aim.2016.66043

    Article  CAS  Google Scholar 

  5. Sorokulova I (2013) Modern status and perspectives of Bacillus bacteria as probiotics. J Prob Health 4(1):e106. https://doi.org/10.4172/2329-8901.10002106

    Article  Google Scholar 

  6. Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM (2004) Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 70(4):2161–2171. https://doi.org/10.1128/AEM.70.4.2161-2171.2004

    Article  CAS  PubMed Central  Google Scholar 

  7. Tam NK, Uyen NQ, Hong HA, Duc LH, Hoa TT, Serra CR, Henriques AO, Cutting SM (2006) The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol 188(7):2692–2700. https://doi.org/10.1128/JB.188.7.2692-2700.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Granum PA, Lund T (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157:223–228. https://doi.org/10.1111/j.1574-6968.1997.tb12776.x

    Article  CAS  PubMed  Google Scholar 

  9. Kim B, Kwon J, Kim MS, Park H, Ji Y, Holzapfel W, Hyun CK (2018) Protective effects of Bacillus probiotics against high-fat diet-induced metabolic disorders in mice. PloS one 13(12):e0210120. https://doi.org/10.1371/journal.pone.0210120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim MS, Kim B, Park H, Ji Y, Holzapfel W, Kim DY, Hyun CK (2018) Long-term fermented soybean paste improves metabolic parameters associated with non-alcoholic fatty liver disease and insulin resistance in high-fat diet-induced obese mice. Biochem Biophys Res Commun 495(2):1744–1751. https://doi.org/10.1016/j.bbrc.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  11. Soh J, Kwon DY, Cha YS (2011) Hepatic gene expression profiles are altered by dietary unsalted Korean fermented soybean (chongkukjang) consumption in mice with diet-induced obesity. J Nutr Metabol 2011(260214):10–10. https://doi.org/10.1155/2011/260214

    Article  CAS  Google Scholar 

  12. Chettri R, Tamang JP (2015) Bacillus species isolated from tungrymbai and bekang, naturally fermented soybean foods of India. Int J Food Microbiol 197:72–76. https://doi.org/10.1016/j.ijfoodmicro.2014.12.021

    Article  PubMed  Google Scholar 

  13. Cho KM (2008) Characterization of potential probiotics Bacillus subtilis CS90 from soybean paste (doenjang) and its antimicrobial activity against food-borne pathogens. J Appl Biol Chem 51(6):285–291. https://doi.org/10.3839/jabc.2008.044

    Article  Google Scholar 

  14. Nam YD, Lee SY, Lim SI (2012) Microbial community analysis of Korean soybean pastes by next-generation sequencing. Int J Food Microbiol 155(1):36–42. https://doi.org/10.1016/j.ijfoodmicro.2012.01.013

    Article  PubMed  Google Scholar 

  15. Oguntoyinbo FA, Huch M, Cho GS, Schillinger U, Holzapfel WH, Sanni AI, Franz CM (2010) Diversity of Bacillus species isolated from okpehe, a traditional fermented soup condiment from Nigeria. J Food Prot 73(5):870–878. https://doi.org/10.4315/0362-028x-73.5.870

    Article  CAS  PubMed  Google Scholar 

  16. Omafuvbe BO, Abiose SH, Shonukan OO (2002) Fermentation of soybean (Glycine max) for soy-daddawa production by starter cultures of Bacillus. Food Microbiol 19(6):561–566. https://doi.org/10.1006/fmic.2002.0513

    Article  CAS  Google Scholar 

  17. Ouoba LI, Diawara B, Amoa-AwuaWk TAS, Møller PL (2004) Genotyping of starter cultures of Bacillus subtilis and Bacillus pumilus for fermentation of African locust bean (Parkia biglobosa) to produce Soumbala. Int J Food Microbiol 90(2):197–205. https://doi.org/10.1016/s0168-1605(03)00302-7

    Article  CAS  PubMed  Google Scholar 

  18. Tamang JP (2015) Naturally fermented ethnic soybean foods of India. J Eth Foods 2(1):8–17. https://doi.org/10.1016/j.jef.2015.02.003

    Article  Google Scholar 

  19. Chopra AK, Mathur DK (1984) Isolation, screening and characterization of thermophilic Bacillus species isolated from dairy products. J Appl Bacteriol 57(2):263–271. https://doi.org/10.1111/j.1365-2672.1984.tb01390.x

    Article  CAS  PubMed  Google Scholar 

  20. Sorokulova IB, Pinchuk IV, Denayrolles M, Osipova IG, Huang JM, Cutting SM, Urdaci MC (2008) The safety of two Bacillus probiotic strains for human use. Dig Dis Sci 53(4):954–963. https://doi.org/10.1007/s10620-007-9959-1

    Article  PubMed  Google Scholar 

  21. McFarland LV, Evans CT, Goldstein EJ (2018) Strain-specificity and disease-specificity of probiotic efficacy: a systematic review and meta-analysis. Front Med 5:124. https://doi.org/10.3389/fmed.2018.00124

    Article  Google Scholar 

  22. Sanz Y, Santacruz A, Gauffin P (2010) Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc 69(03):434–441. https://doi.org/10.1017/S0029665110001813

    Article  CAS  PubMed  Google Scholar 

  23. Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7(11):639–646. https://doi.org/10.1038/nrendo.2011/126

    Article  CAS  PubMed  Google Scholar 

  24. Cani PD, Delzenne NM (2009) Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 9(6):737–743. https://doi.org/10.1016/j.coph.2009.06.016

    Article  CAS  PubMed  Google Scholar 

  25. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jonas WJ, RoeBA AJP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484. https://doi.org/10.1038/nature07540

    Article  CAS  PubMed  Google Scholar 

  26. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267. https://doi.org/10.1126/science.1223813

    Article  CAS  PubMed  Google Scholar 

  27. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18(1):190–195. https://doi.org/10.1038/oby.2009.167

    Article  PubMed  Google Scholar 

  28. Conterno L, Fava F, Viola R, Tuohy KM (2011) Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr 6(3):241–260. https://doi.org/10.1007/s12263-011-0230-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murphy EF, Cotter PD, Healy S, Marques TM, O’Sullivan O, Fouhy F, Clarke SF, O’Toole PW, Quigley EM, Stanton C, Ross PR, O’Doherty RM, Shanahan F (2010) Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59(12):1635–1642. https://doi.org/10.1135/gut.2010.215665

    Article  CAS  PubMed  Google Scholar 

  30. Million M, Raoult D (2013) Species and strain specificity of Lactobacillus probiotics effect on weight regulation. Microb Pathog 55:52–54. https://doi.org/10.1016/j.micpath.2012.09.013

    Article  PubMed  Google Scholar 

  31. Wine E, Gareau MG, Johnson-Henry K, Sherman PM (2009) Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiol Lett 300(1):146–152. https://doi.org/10.1111/j.1574-6968.2009.01781.x

    Article  CAS  PubMed  Google Scholar 

  32. Rhayat L, Jacquier V, Brinch KS, Nielsen P, Nelson A, Geraert PA, Devillard E (2017) Bacillus subtilis strain specificity affects performance improvement in broilers. Poult Sci 96(7):2274–2280. https://doi.org/10.3382/ps/pex018

    Article  CAS  PubMed  Google Scholar 

  33. Chang JH, Shim YY, Cha SK, Chee KM (2010) Probiotic characteristics of lactic acid bacteria isolated from kimchi. J Appl Microbiol 109(1):220–230. https://doi.org/10.1111/j.1365-2672.2009.04648.x

    Article  CAS  PubMed  Google Scholar 

  34. Cho SY, Park MJ, Kim KM, Ryu JH, Park HJ (2011) Production of high γ-aminobutyric acid (GABA) sour kimchi using lactic acid bacteria isolated from mukeunjee kimchi. Food Sci Biotechnol 20(2):403–408. https://doi.org/10.1007/s10068-011-0057

    Article  CAS  Google Scholar 

  35. Park S, Ji Y, Park H, Lee K, Park H, Beck BR, Shin H, Holzapfel WH (2016) Evaluation of functional properties of lactobacilli isolated from Korean white kimchi. Food Control 69:5–12. https://doi.org/10.1016/j.foodcont.2016.04.037

    Article  CAS  Google Scholar 

  36. Park S, Ji Y, Jung HY, Park H, Kang J, Choi SH, Shin H, Hyun CK, Kim KT, Holzapfel WH (2017) Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model. Appl Microbiol Biotechnol 101(4):1605–1614. https://doi.org/10.1007/s00253-016-7953-2

    Article  CAS  PubMed  Google Scholar 

  37. Kim MJ, Kwak HS, Jung HY, Kim SS (2016) Microbial communities related to sensory attributes in Korean fermented soy-bean paste (doenjang). Food Res Int 89:724–732. https://doi.org/10.1016/j.foodres.2016.09.032

    Article  CAS  PubMed  Google Scholar 

  38. Lim SM, Im DS (2009) Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J Microbiol Biotechnol 19(2):178–186. https://doi.org/10.4014/jmb.0804.269

    Article  CAS  PubMed  Google Scholar 

  39. Patra JK, Das G, Paramithiotis S, Shin HS (2016) Kimchi and other widely consumed traditional fermented foods of Korea: a review. Front Microbiol 7:1493. https://doi.org/10.3389/fmicb.2016.01493

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hong HA, Huang JM, Khaneja R, Hiep LV, Urdaci MC, Cutting SM (2008) The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol 105(2):510–520. https://doi.org/10.1111/j.1365-2672.2008.03773.x

    Article  CAS  PubMed  Google Scholar 

  41. Amoa-Awua WK, Terlabie NN, Sakyi-Dawson E (2006) Screening of 42 Bacillus isolates for ability to ferment soybeans into dawadawa. Int J Food Microbiol 106(3):343–347. https://doi.org/10.1016/j.ijfoodmicro.2005.08.016

    Article  CAS  PubMed  Google Scholar 

  42. Montanhini MTM, Montanhini RN, Pinto JPN, Bersot LS (2013) Effect of temperature on the lipolytic and proteolytic activity of Bacillus cereus isolated from dairy products. Int Food Res J 20(3):1417–1420. https://doi.org/10.4025/actascitechnol.v35i1.13752

    Article  CAS  Google Scholar 

  43. Ji Y, Park S, Park H, Hwang E, Shin H, Pot B, Holzapfel WH (2018) Modulation of active gut microbiota by Lactobacillus rhamnosus GG in a diet induced obesity murine model. Front Microbiol 9:710. https://doi.org/10.3389/fmicb.2018.007.10

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ji Y, Kim H, Park H, Lee J, Yeo S, Yang J, Park SY, Yoon HS, Cho GS, Franz CM, Bomba A, Shin HK, Holzapfel WH (2012) Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Benef Microbes 3(1):13–22. https://doi.org/10.3920/BM2011.0046

    Article  CAS  PubMed  Google Scholar 

  45. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  46. Raoult D (2009) Probiotics and obesity: a link? Nat Rev Microbiol 7(9):616–616. https://doi.org/10.1038/nrmicro2209

    Article  CAS  PubMed  Google Scholar 

  47. Musso G, Gambino R, Cassader M (2010) Obesity, diabetes, and gut microbiota. Diabetes Care 33(10):2277–2284. https://doi.org/10.2337/dc10-0556

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim DM, Ahn CW, Nam SY (2005) Prevalence of obesity in Korea. Obes Rev 6(2):117–121. https://doi.org/10.1111/j.1467-789X.2005.00173.x

    Article  CAS  PubMed  Google Scholar 

  49. Park J, Hilmers DC, Mendoza JA, Stuff JE, Liu Y, Nicklas TA (2010) Prevalence of metabolic syndrome and obesity in adolescents aged 12 to 19 years: comparison between the United States and Korea. J Korean Med Sci 25(1):75–82. https://doi.org/10.3346/jkms.2010.25.1.75

    Article  PubMed  Google Scholar 

  50. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340. https://doi.org/10.1194/jlr.R036012

    Article  CAS  Google Scholar 

  51. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7):1509–1517. https://doi.org/10.2337/db08-1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brahe LK, Astrup A, Larsen LH (2013) Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev 14(12):950–959. https://doi.org/10.1111/obr.12068

    Article  CAS  PubMed  Google Scholar 

  53. Berggren AM, Nyman EM, Lundquist I, Björck IM (1996) Influence of orally and rectally administered propionate on cholesterol and glucose metabolism in obese rats. Br J Nutr 76(02):287–294. https://doi.org/10.1079/bjn19960032

    Article  CAS  PubMed  Google Scholar 

  54. Arora T, Sharma R, Frost G (2011) Propionate. Anti-obesity and satiety enhancing factor? Appetite 56(2):511–515. https://doi.org/10.1016/j.appet.2011.01.016

    Article  PubMed  Google Scholar 

  55. Xu P, Wang J, Hong F, Wang S, Jin X, Xue T, Jia L, ZhaiY (2017) Melatonin prevents obesity through modulation of gut microbiota in mice. J Pineal Res 62(4):e12399. https://doi.org/10.1111/jpi.12399

  56. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Gavalko Y, Dorofeyev A, Romanenko M, Tkach S, Sineok L, Lushchak O, Veiserman A (2017) Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol 17(1):120. https://doi.org/10.1186/s12866-017-1027-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Castaner O, Goday A, Park YM, Lee SH, Magkos F, Shiow SATE, Schröder H (2018) The gut microbiome profile in obesity: a systematic review. Int J Endocrinol Article ID 4095789:9–9. https://doi.org/10.1155/2018/4095789

    Article  Google Scholar 

  58. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehibauer MJ, Ilkayaeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Treuren WV, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science 341:6150. https://doi.org/10.1126/science.1241214

    Article  CAS  Google Scholar 

  59. Yang JY, Lee YS, Kim Y, Lee SH, Ryu S, Fukuda S, Hase K, Yang CS, Lim HS, Kim MS, Kim HM, Ahn SH, Kwon BE, Ko HJ, Kweon MN (2017) Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Muc Immunol 10(1):104–116. https://doi.org/10.1038/mi.2016.42

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Korean Food Research Institute, Jeonju, South Korea, and Bio & Medical Technology Program of the Korean National Research Foundation (NRF) of the Korean Ministry of Science and Technology (No. 2016M3A9A5923160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm H. Holzapfel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The animal study was approved by the ethical committee of Handong Global University (Pohang, South Korea) in compliance with the regulations of the Republic of Korea.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Lee, M., Jeong, D. et al. Safety Evaluation and In vivo Strain-Specific Functionality of Bacillus Strains Isolated from Korean Traditional Fermented Foods. Probiotics & Antimicro. Prot. 13, 60–71 (2021). https://doi.org/10.1007/s12602-020-09672-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09672-5

Keywords

Navigation