Skip to main content
Log in

Effects of Lactobacillus rhamnosus ATCC 7469 on Different Parameters Related to Health Status of Rainbow Trout (Oncorhynchus mykiss) and the Protection Against Yersinia ruckeri

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In the current study, we investigated the effect of a probiotic bacterium (Lactobacillus rhamnosus ATCC 7469) microencapsulated with alginate and hi-maize starch and coated with chitosan on improving growth factors, body composition, blood chemistry, and the immune response of rainbow trout (initial weight: 18.41 ± 0.32 g). Four experimental diets were formulated to feed fish for 60 days. They were control diet without any additive (C), diet added with beads without probiotic (E), a probiotic sprayed to the diet (L.r), and encapsulated probiotic supplemented diet (E-L.r). The results indicated that feeding with E-Lr significantly improved weight gain (84.98 g) and feed conversion ratio (0.95) compared to the other groups (P < 0.05). Also, fish fed E-Lr diet had a significantly higher value of whole-body protein (17.51%), total protein in the blood (4.98 g/dL), lysozyme (30.66 U/mL), alternative complement pathway hemolytic activity (134 U/mL), superoxide dismutase (203 U/mg protein), and catalase (528.33 U/mg protein) (P < 0.05) as compared to those fed the control diet. Similarly, a higher relative expression of immune-related genes such as interleukin-1 (Il-1) and tumor necrosis factor-alpha (TNF-1α) were reported in those fed E-L.r and L.r diets respectively. Interestingly, the fish fed dietary E-L.r had a significantly lower value of lipid in the whole body (4.82%) and cholesterol in the blood (160.67%) in comparison with those fed the control diet (P < 0.05). At the end of the experiment, all groups were challenged by Yersinia ruckeri where the survival rate of rainbow trout fed dietary E-L.r (70.36%) was statistically higher than that of the others (P < 0.05). Overall, the results suggested that encapsulated probiotic Lact. rhamnosus ATCC 7469 acted better than unencapsulated probiotic and has a potential to improve growth performance, flesh quality, and the immune response of rainbow trout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. FAO (2018) The state of world fisheries and aquaculture 2018. Food and Agriculture Organization of the United Nations, Rome http://www.fao.org/state-of-fisheries-aquaculture

    Google Scholar 

  2. Long L, Zhang H, Ni Q, Liu H, Wu F, Wang X (2019) Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system. Comp Biochem Physiol C Toxicol 219:25–34

    CAS  Google Scholar 

  3. Mirghaed AT, Hoseini SM, Ghelichpour M (2018) Effects of dietary 1, 8-cineole supplementation on physiological, immunological and antioxidant responses to crowding stress in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 81:182–188

    Google Scholar 

  4. Santos L, Ramos F (2018) Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem. Int J Antimicrob Agents 52(2):135–143

    CAS  Google Scholar 

  5. Xiong W, Sun Y, Zhang T, Ding X, Li Y, Wang M, Zeng Z (2015) Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China. Microb Ecol 70(2):425–432

    CAS  Google Scholar 

  6. Hai N (2015) The use of probiotics in aquaculture. J Appl Microbiol 119(4):917–935

    CAS  Google Scholar 

  7. Dawood MA, Koshio S, Abdel-Daim MM, Van Doan H (2018) Probiotic application for sustainable aquaculture. Rev Aquacult 11(3):907–924

    Google Scholar 

  8. Dawood MA, Koshio S, Esteban MÁ (2018) Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev Aquacult 10(4):950–974

    Google Scholar 

  9. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671

    CAS  Google Scholar 

  10. Cordero H, Esteban MÁ, Cuesta A (2014) Use of probiotic bacteria against bacterial and viral infections in shellfish and fish aquaculture. Sustainable Aquaculture Techniques. IntechOpen. https://www.intechopen.com/books/sustainable-aquaculture-techniques/use-of-probiotic-bacteria-against-bacterial-and-viral-infections-in-shellfish-and-fish-aquaculture, In. https://doi.org/10.5772/57198

    Book  Google Scholar 

  11. Land MH, Rouster-Stevens K, Woods CR, Cannon ML, Cnota J, Shetty AK (2005) Lactobacillus sepsis associated with probiotic therapy. Pediatrics 115(1):178–181

    Google Scholar 

  12. Sanders ME, Guarner F, Guerrant R, Holt PR, Quigley EM, Sartor RB, Sherman PM, Mayer EA (2013) An update on the use and investigation of probiotics in health and disease. Gut 62(5):787–796

    CAS  Google Scholar 

  13. Nikoskelainen S, Salminen S, Bylund G, Ouwehand AC (2001) Characterization of the properties of human-and dairy-derived probiotics for prevention of infectious diseases in fish. Appl Environ Microbiol 67(6):2430–2435

    CAS  Google Scholar 

  14. Pirarat N, Kobayashi T, Katagiri T, Maita M, Endo M (2006) Protective effects and mechanisms of a probiotic bacterium Lactobacillus rhamnosus against experimental Edwardsiella tarda infection in tilapia (Oreochromis niloticus). Vet Immunol Immunopathol 113(3–4):339–347

    CAS  Google Scholar 

  15. Pirarat N, Pinpimai K, Rodkhum C, Chansue N, Ooi EL, Katagiri T, Maita M (2015) Viability and morphological evaluation of alginate-encapsulated Lactobacillus rhamnosus GG under simulated tilapia gastrointestinal conditions and its effect on growth performance, intestinal morphology and protection against Streptococcus agalactiae. Anim Feed Sci Tech 207:93–103

    CAS  Google Scholar 

  16. Nikoskelainen S, Ouwehand AC, Bylund G, Salminen S, Lilius E-M (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15(5):443–452

    CAS  Google Scholar 

  17. Pirarat N, Pinpimai K, Endo M, Katagiri T, Ponpornpisit A, Chansue N, Maita M (2011) Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res Vet Sci 91(3):e92–e97

    CAS  Google Scholar 

  18. Panigrahi A, Kiron V, Satoh S, Watanabe T (2010) Probiotic bacteria Lactobacillus rhamnosus influences the blood profile in rainbow trout Oncorhynchus mykiss (Walbaum). Fish Physiol Biochem 36(4):969–977

    CAS  Google Scholar 

  19. Dawood MA, Koshio S, Ishikawa M, Yokoyama S, El Basuini MF, Hossain MS, Nhu TH, Dossou S, Moss AS (2016) Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol 49:275–285

    CAS  Google Scholar 

  20. Xia Y, Cao J, Wang M, Lu M, Chen G, Gao F, Liu Z, Zhang D, Ke X, Yi M (2019) Effects of Lactococcus lactis subsp. lactis JCM5805 on colonization dynamics of gut microbiota and regulation of immunity in early ontogenetic stages of tilapia. Fish Shellfish Immunol 86:53–63

    CAS  Google Scholar 

  21. Xia Y, Lu M, Chen G, Cao J, Gao F, Wang M, Liu Z, Zhang D, Zhu H, Yi M (2018) Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 76:368–379

    CAS  Google Scholar 

  22. Topic Popovic N, Strunjak-Perovic I, Sauerborn-Klobucar R, Barisic J, Jadan M, Kazazic S, Kesner-Koren I, Prevendar Crnic A, Suran J, Beer Ljubic B (2017) The effects of diet supplemented with Lactobacillus rhamnosus on tissue parameters of rainbow trout, (Oncorhynchus mykiss Walbaum). Aquac Res 48(5):2388–2401

    CAS  Google Scholar 

  23. Reid G, Sanders M, Gaskins HR, Gibson GR, Mercenier A, Rastall R, Roberfroid M, Rowland I, Cherbut C, Klaenhammer TR (2003) New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol 37(2):105–118

    Google Scholar 

  24. Vaughan EE, Heilig HG, Ben-Amor K, De Vos WM (2005) Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiol Rev 29(3):477–490

    CAS  Google Scholar 

  25. Ramos PE, Cerqueira MA, Teixeira JA, Vicente AA (2018) Physiological protection of probiotic microcapsules by coatings. Crit Rev Food Sci Nutr 58(11):1864–1877

    CAS  Google Scholar 

  26. Kim J, Muhammad N, Jhun BH, Yoo J-W (2016) Probiotic delivery systems: a brief overview. J Pharm Investig 46(4):377–386

    CAS  Google Scholar 

  27. Corona-Hernandez RI, Álvarez-Parrilla E, Lizardi-Mendoza J, Islas-Rubio AR, de la Rosa LA, Wall-Medrano A (2013) Structural stability and viability of microencapsulated probiotic bacteria: a review. Compr Rev Food Sci F 12(6):614–628

    CAS  Google Scholar 

  28. Chávarri M, Marañón I, Villarán MC (2012) Encapsulation technology to protect probiotic bacteria. Probiotics. IntechOpen. https://www.intechopen.com/books/probiotics/encapsulation-technology-to-protect-probiotic-bacteria, In. https://doi.org/10.5772/50046

    Book  Google Scholar 

  29. Masoomi Dezfooli S, Gutierrez-Maddox N, Alfaro A, Seyfoddin A (2018) Encapsulation for delivering bioactives in aquaculture. Rev Aquacult 11(3):631–660

    Google Scholar 

  30. Dong QY, Chen MY, Xin Y, Qin XY, Cheng Z, Shi LE, Tang ZX (2013) Alginate-based and protein-based materials for probiotics encapsulation: a review. IJFST 48(7):1339–1351

    CAS  Google Scholar 

  31. Đorđević V, Paraskevopoulou A, Mantzouridou F, Lalou S, Pantić M, Bugarski B, Nedović V (2016) Encapsulation technologies for food industry. Emerging and traditional technologies for safe, healthy and quality food. Springer, In, pp 329–382

    Google Scholar 

  32. Shori AB (2017) Microencapsulation improved probiotics survival during gastric transit. HAYATI J Biosci 24(1):1–5

    Google Scholar 

  33. Călinoiu L-F, Ştefănescu BE, Pop ID, Muntean L, Vodnar DC (2019) Chitosan coating applications in probiotic microencapsulation. Coatings 9 (3):194, doi:/https://doi.org/10.3390/coatings9030194

  34. Burgain J, Gaiani C, Linder M, Scher J (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J Food Eng 104(4):467–483

    CAS  Google Scholar 

  35. Mohammadian T, Dezfuly ZT, Motlagh RG, Jangaran-Nejad A, Hosseini SS, Khaj H, Alijani N (2019) Effect of encapsulated lactobacillus bulgaricus on innate immune system and hematological parameters in rainbow trout (Oncorhynchus mykiss), post-administration of Pb. Probiotics Antimicro:1–14

  36. Rosas-Ledesma P, León-Rubio JM, Alarcón FJ, Moriñigo MA, Balebona MC (2012) Calcium alginate capsules for oral administration of fish probiotic bacteria: assessment of optimal conditions for encapsulation. Aquac Res 43(1):106–116

    Google Scholar 

  37. Cordero H, Guardiola FA, Tapia-Paniagua ST, Cuesta A, Meseguer J, Balebona MC, Moriñigo MÁ, Esteban MÁ (2015) Modulation of immunity and gut microbiota after dietary administration of alginate encapsulated Shewanella putrefaciens Pdp11 to gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 45(2):608–618

    CAS  Google Scholar 

  38. Ghosh B, Cain K, Nowak B, Bridle A (2016) Microencapsulation of a putative probiotic Enterobacter species, C6-6, to protect rainbow trout, Oncorhynchus mykiss (Walbaum), against bacterial Coldwater disease. J Fish Dis 39(1):1–11

    CAS  Google Scholar 

  39. Rodrigues JB, Leitão NJ, Chaves KS, Gigante ML, Portella MC, Grosso CR (2014) High protein microparticles produced by ionic gelation containing Lactobacillus acidophilus for feeding pacu larvae. Food Res Int 63:25–32

    CAS  Google Scholar 

  40. Jami MJ, Kenari AA, Paknejad H, Mohseni M (2019) Effects of dietary b-glucan, mannan oligosaccharide, Lactobacillus plantarum and their combinations on growth performance, immunity and immune related gene expression of Caspian trout, Salmo trutta caspius (Kessler, 1877). Fish Shellfish Immunol 91:202–208

    CAS  Google Scholar 

  41. Esmaeili M, Abedian Kenari A, Rombenso A (2017a) Effects of fish meal replacement with meat and bone meal using garlic (Allium sativum) powder on growth, feeding, digestive enzymes and apparent digestibility of nutrients and fatty acids in juvenile rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Aquac Nutr 23(6):1225–1234

    CAS  Google Scholar 

  42. Esmaeili M, Kenari AA, Rombenso A (2017b) Immunohematological status under acute ammonia stress of juvenile rainbow trout (Oncorhynchus mykiss Walbaum, 1792) fed garlic (Allium sativum) powder-supplemented meat and bone meal-based feeds. Comp Clin Path 26(4):853–866

    CAS  Google Scholar 

  43. Hosseinpour Aghaei R, Abedian Kenari A, Yazdani Sadati MA, Esmaeili M (2018) The effect of time-dependent protein restriction on growth factors, nonspecific immunity, body composition, fatty acids and amino acids in the Siberian sturgeon (Acipenser baerii). Aquac Res 49(9):3033–3044

    CAS  Google Scholar 

  44. Ghosi Mobaraki MR, Abedian Kenari A, Bahrami Gorji S, Esmaeili M (2020) Effect of different levels of fish and vegetable oil on the growth performance, body composition, fatty acid profiles, reproductive performance, and larval resistance in pearl gourami (Trichogaster leeri). Aquac, Nutr In press

    Google Scholar 

  45. Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol 62(1–2):47–55

    CAS  Google Scholar 

  46. Shu X, Zhu K (2002) The release behavior of brilliant blue from calcium–alginate gel beads coated by chitosan: the preparation method effect. Eur J Pharm Biopharm 53(2):193–201

    CAS  Google Scholar 

  47. Krasaekoopt W, Bhandari B, Deeth H (2004) The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J 14(8):737–743

    CAS  Google Scholar 

  48. AOAC (1995) AOAC (Association of Official Analytical Chemists), official methods of analysis (16th ed.), P. Cunniff (Ed.), Airlington, VA

  49. Amar EC, Kiron V, Satoh S, Okamoto N, Watanabe T (2000) Effects of dietary β-carotene on the immune response of rainbow trout Oncorhynchus mykiss. Fisheries Sci 66(6):1068–1075

    CAS  Google Scholar 

  50. Demers NE, Bayne CJ (1997) The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev Comp Immunol 21(4):363–373

    CAS  Google Scholar 

  51. Miandare HK, Niknejad M, Shabani A, Safari R (2016) Exposure of Persian sturgeon (Acipenser persicus) to cadmium results in biochemical, histological and transcriptional alterations. Comp Biochem Physiol C Toxicol Pharmacol 181:1–8

    Google Scholar 

  52. Van Nguyen N, Onoda S, Van Khanh T, Hai PD, Trung NT, Hoang L, Koshio S (2019) Evaluation of dietary heat-killed Lactobacillus plantarum strain L-137 supplementation on growth performance, immunity and stress resistance of Nile tilapia (Oreochromis niloticus). Aquaculture 498:371–379

    Google Scholar 

  53. Son VM, Chang C-C, Wu M-C, Guu Y-K, Chiu C-H, Cheng W (2009) Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides. Fish Shellfish Immunol 26(5):691–698

    CAS  Google Scholar 

  54. Giri SS, Sukumaran V, Oviya M (2013) Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 34(2):660–666

    CAS  Google Scholar 

  55. Shearer KD (1994) Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 119(1):63–88

    CAS  Google Scholar 

  56. Matani Bour H, Esmaeili M, Abedian Kenari A (2018) Growth performance, muscle and liver composition, blood traits, digestibility and gut bacteria of beluga (Huso huso) juvenile fed different levels of soybean meal and lactic acid. Aquac Nutr 24(4):1361–1368

    CAS  Google Scholar 

  57. Roohani AM, Abedian Kenari A, Fallahi Kapoorchali M, Borani MS, Zoriezahra SJ, Smiley AH, Esmaeili M, Rombenso AN (2019) Effect of spirulina Spirulina platensis as a complementary ingredient to reduce dietary fish meal on the growth performance, whole-body composition, fatty acid and amino acid profiles, and pigmentation of Caspian brown trout (Salmo trutta caspius) juveniles. Aquac Nutr 25(3):633–645

    CAS  Google Scholar 

  58. Abtahi B, Yousefi M, Kenari AA (2013) Influence of dietary nucleotides supplementation on growth, body composition and fatty acid profile of Beluga sturgeon juveniles (Huso huso). Aquac Res 44(2):254–260

    CAS  Google Scholar 

  59. Tazikeh T, Abedian Kenari A, Esmaeili M (2019) Effects of fish meal replacement by meat and bone meal supplemented with garlic (Allium sativum) powder on biological indices, feeding, muscle composition, fatty acids and amino acids profile of whiteleg shrimp (litopenaeus vannamei). Aquac Res, ahead of print. https://doi.org/10.1111/are.14416

  60. Ebrahimi G, Ouraji H, Khalesi M, Sudagar M, Barari A, Zarei Dangesaraki M, Jani Khalili K (2012) Effects of a prebiotic, Immunogen®, on feed utilization, body composition, immunity and resistance to Aeromonas hydrophila infection in the common carp Cyprinus carpio (Linnaeus) fingerlings. J Anim Physiol Anim Nutr 96(4):591–599

    CAS  Google Scholar 

  61. Yilmaz E, Genc MA, Genc E (2007) Effects of dietary mannan oligosaccharides on growth, body composition, and intestine and liver histology of rainbow trout, Oncorhynchus mykiss. Isr J Aquac 59(3):182–158

    Google Scholar 

  62. Ghosh S, Sinha A, Sahu C (2008) Dietary probiotic supplementation in growth and health of live-bearing ornamental fishes. Aquac Nutr 14(4):289–299

    CAS  Google Scholar 

  63. Allameh S, Yusoff F, Ringø E, Daud H, Saad C, Ideris A (2016) Effects of dietary mono-and multiprobiotic strains on growth performance, gut bacteria and body composition of Javanese carp (Puntius gonionotus, B leeker 1850). Aquac Nutr 22(2):367–373

    CAS  Google Scholar 

  64. Ramezanzadeh S, Abedian Kenari A, Esmaeili M (2019a) Immunohematological parameters of rainbow trout (Oncorhynchus mykiss) fed supplemented diet with different forms of barberry root (Berberis vulgaris). Comp Clin Path, ahead of print 29:177–187. https://doi.org/10.1007/s00580-019-03032-8

    Article  CAS  Google Scholar 

  65. Ramezanzadeh S, Abedian Kenari A, Esmaeili M, Rombenso A (2020) Effects of different forms of barberry root (Berberis vulgaris) on growth performance, muscle fatty acids profile, whole body composition and digestive enzymes of rainbow trout (Oncorhynchus mykiss). J World Aquacult Soc, In press

  66. Zeilab Sendijani R, Abedian Kenari A, Smiley AH, Esmaeili M (2019) The effect of extract from dill (Anethum graveolens) on the growth performance, body composition, immune system and antioxidant system of rainbow trout (Oncorhynchus mykiss). N Am J Aquacult, ahead of print. https://doi.org/10.1002/naaq.10123

  67. Safavi SV, Abedian Kenari A, Tabarsa M, Esmaeili M (2019) Effect of sulfated polysaccharides extracted from marine macroalgae (Ulva intestinalis and Gracilariopsis persica) on growth performance, fatty acid profile, and immune response of rainbow trout (Oncorhynchus mykiss). J Appl Phycol, In press

  68. Sáenz de Rodrigáñez M, Díaz-Rosales P, Chabrillón M, Smidt H, Arijo S, León-Rubio J, Alarcón F, Balebona M, Moriñigo M, Cara J (2009) Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Senegalese sole (Solea senegalensis, Kaup 1858). Aquac Nutr 15(2):177–185

    Google Scholar 

  69. Mazurkiewicz J, Przybyl A, Sip A, Grajek W (2007) Effect of Carnobacterium divergens and Enterococcus hirae as probiotic bacteria in feed for common carp, Cyprinus carpio L. Arch Pol Fisheries 15(2):93–102

    Google Scholar 

  70. Dawood MA, Koshio S, Ishikawa M, El-Sabagh M, Yokoyama S, Wang W-L, Yukun Z, Olivier A (2017) Physiological response, blood chemistry profile and mucus secretion of red sea bream (Pagrus major) fed diets supplemented with Lactobacillus rhamnosus under low salinity stress. Fish Physiol Biochem 43(1):179–192

    CAS  Google Scholar 

  71. Nayak S (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29(1):2–14

    CAS  Google Scholar 

  72. Zwollo P (2018) The humoral immune system of anadromous fish. Dev Comp Immunol 80:24–33

    CAS  Google Scholar 

  73. Jinendiran S, Nathan AA, Ramesh D, Vaseeharan B, Sivakumar N (2019) Modulation of innate immunity, expression of cytokine genes and disease resistance against Aeromonas hydrophila infection in goldfish (Carassius auratus) by dietary supplementation with Exiguobacterium acetylicum S01. Fish Shellfish Immunol 84:458–469

    CAS  Google Scholar 

  74. Hoseinifar SH, Van Doan H, Dadar M, Ringø E, Harikrishnan R (2019) Feed additives, gut microbiota, and health in finfish aquaculture. Microbial Communities in Aquaculture Ecosystems. Springer, In, pp 121–142

    Google Scholar 

  75. Panigrahi A, Kiron V, Kobayashi T, Puangkaew J, Satoh S, Sugita H (2004) Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet Immunol Immunopathol 102(4):379–388

    CAS  Google Scholar 

  76. Bajracharya P, Islam MA, Jiang T, Kang S-K, Choi Y-J, Cho C-S (2012) Effect of microencapsulation of Lactobacillus salivarus 29 into alginate/chitosan/alginate microcapsules on viability and cytokine induction. J Microencapsul 29(5):429–436

    CAS  Google Scholar 

  77. Jiang T, Kim Y-K, Singh B, Kang S-K, Choi Y-J, Cho C-S (2013) Effect of microencapsulation of Lactobacillus plantarum 25 into alginate/chitosan/alginate microcapsules on viability and cytokine induction. J Nanosci Nanotechnol 13(8):5291–5295

    CAS  Google Scholar 

  78. Lee J-S, Cheng H, Damte D, Lee S-J, Kim J-C, Rhee M-H, Suh J-W, Park S-C (2013) Effects of dietary supplementation of Lactobacillus pentosus PL11 on the growth performance, immune and antioxidant systems of Japanese eel Anguilla japonica challenged with Edwardsiella tarda. Fish Shellfish Immunol 34(3):756–761

    CAS  Google Scholar 

  79. Dawood MA, Koshio S, Ishikawa M, Yokoyama S (2015) Effects of heat killed Lactobacillus plantarum (LP20) supplemental diets on growth performance, stress resistance and immune response of red sea bream, Pagrus major. Aquaculture 442:29–36

    CAS  Google Scholar 

  80. Zhang C-N, Zhang J-L, Guan W-C, Zhang X-F, Guan S-H, Zeng Q-H, Cheng G-F, Cui W (2017) Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var. Fish Shellfish Immunol 68:84–91

    CAS  Google Scholar 

  81. Li Z, Bao N, Ren T, Han Y, Jiang Z, Bai Z, Hu Y, Ding J (2019) The effect of a multi-strain probiotic on growth performance, non-specific immune response, and intestinal health of juvenile turbot. Scophthalmus maximus L Fish Physiol Biochem:1–15

  82. Dawood MA, Magouz FI, Salem MF, Abdel-Daim HA (2019) Modulation of digestive enzyme activity, blood health, oxidative responses and growth-related gene expression in GIFT by heat-killed Lactobacillus plantarum (L-137). Aquaculture 505:127–136

    CAS  Google Scholar 

  83. Ngamkala S, Futami K, Endo M, Maita M, Katagiri T (2010) Immunological effects of glucan and Lactobacillus rhamnosus GG, a probiotic bacterium, on Nile tilapia Oreochromis niloticus intestine with oral Aeromonas challenges. Fisheries Sci 76(5):833–840

    CAS  Google Scholar 

  84. Abraham TJ, Babu S, Mondal S, Banerjee T (2007) Effects of dietary supplementation of commercial human probiotic and antibiotic on the growth rate and content of intestinal microflora in ornamental fishes. Bangladesh J Fish Res 11(1):57–63

    Google Scholar 

  85. Abbaszadeh S, Gandomi H, Misaghi A, Bokaei S, Noori N (2014) The effect of alginate and chitosan concentrations on some properties of chitosan-coated alginate beads and survivability of encapsulated Lactobacillus rhamnosus in simulated gastrointestinal conditions and during heat processing. J Sci Food Agric 94(11):2210–2216

    CAS  Google Scholar 

  86. NRC (2011) National Research Council, nutrient requirements of fish and shrimp, the National Academies Press, Washington DC. National academies press

Download references

Acknowledgments

The authors gratefully acknowledge of the Tarbiat Modares University for the financial supported this research as a Ph.D thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolmohammad Abedian Kenari.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooshyar, Y., Abedian Kenari, A., Paknejad, H. et al. Effects of Lactobacillus rhamnosus ATCC 7469 on Different Parameters Related to Health Status of Rainbow Trout (Oncorhynchus mykiss) and the Protection Against Yersinia ruckeri. Probiotics & Antimicro. Prot. 12, 1370–1384 (2020). https://doi.org/10.1007/s12602-020-09645-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09645-8

Keywords

Navigation