Skip to main content

Advertisement

Log in

The Evolution of Human Probiotics: Challenges and Prospects

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In recent years, the intestinal microbiota has been found to greatly influence a number of biological processes important for human health and longevity. Microbial composition changes easily in response to external factors, such as an unbalanced diet, lack of physical activity, and smoking. Probiotics are a key factor in maintaining the optimal composition of the intestinal microbiota. However, a number of important questions related to probiotics, such as indication for prescription, comparative efficacy of monostrain and multistrain probiotics, methods of delivery, and shelf life, remain unresolved. The aim of this review is to highlight existing issues regarding probiotic production and their prescription. The review presents the most recent findings regarding advantages and efficacy of monostrain and multistrain probiotics, preservation of probiotic strains in capsules and microcapsules, production of probiotics in the form of biofilms for improved efficacy and survival, and results of clinical studies evaluating the benefits of probiotics against different pathologies. We believe that this work will be of interest to physicians and researchers alike and will promote the development of new probiotics and ensuing regimens aimed at the treatment of various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SJ (2013) The influence of diet on the gut microbiota. Pharmacol Res 69:52–60. https://doi.org/10.1016/j.phrs.2012.10.020

    Article  CAS  Google Scholar 

  2. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A et al (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63:1910–1920. https://doi.org/10.1136/gutjnl-2013-306541

    Article  CAS  Google Scholar 

  3. Biedermann L, Zeitz J, Mwinyi J, Sutter-Minder E, Rehman A, Ott SJ, Steurer-Stey C, Frei A, Frei P, Scharl M, Loessner MJ, Vavricka SR, Fried M, Schreiber S, Schuppler M, Rogler G (2013) Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One 8:e59260. https://doi.org/10.1371/journal.pone.0059260

    Article  CAS  Google Scholar 

  4. Romano KA, Vivas EI, Amador-Noguez D, Rey FE (2015) Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio 6:e02481–e02414. https://doi.org/10.1128/mbio.02481-14

    Article  Google Scholar 

  5. Sartor RB, Wu GD (2017) Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 152:327–339.e4. https://doi.org/10.1053/j.gastro.2016.10.012

    Article  CAS  Google Scholar 

  6. Dior M, Delagrèverie H, Duboc H, Jouet P, Coffin B, Brot L, Humbert L, Trugnan G, Seksik P, Sokol H, Rainteau D, Sabate JM (2016) Interplay between bile acid metabolism and microbiota in irritable bowel syndrome. Neurogastroenterol Motil 28:1330–1340. https://doi.org/10.1111/nmo.12829

    Article  CAS  Google Scholar 

  7. Feng Q, Chen WD, Wang YD (2018) Gut microbiota: an integral moderator in health and disease. Front Microbiol 9:151. https://doi.org/10.3389/fmicb.2018.00151

    Article  Google Scholar 

  8. Bailey MT, Cryan JF (2017) The microbiome as a key regulator of brain, behavior and immunity: commentary on the 2017 named series. Brain Behav Immun 66:18–22. https://doi.org/10.1016/j.bbi.2017.08.017

    Article  Google Scholar 

  9. Dhiman RK, Rana B, Agrawal S, Garg A, Chopra M, Thumburu KK et al (2014) Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology 147:1327–1337.e3. https://doi.org/10.1053/j.gastro.2014.08.031

    Article  CAS  Google Scholar 

  10. Fujiya M, Ueno N, Kohgo Y (2014) Probiotic treatments for induction and maintenance of remission in inflammatory bowel diseases: a meta-analysis of randomized controlled trials. Clin J Gastroenterol 7:84–85. https://doi.org/10.1007/s12328-014-0456-8

    Article  Google Scholar 

  11. Ford AC, Quigley EMM, Lacy BE, Lembo A, Saito Y, Schiller L et al (2014) Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am J Gastroenterol 109:1547–1561. https://doi.org/10.1038/ajg.2014.202

    Article  Google Scholar 

  12. Ivashkin V, Drapkina O, Ye P, Kuchumova S, Sheptulin A, Shifrin O (2015) The effect of a multi-strain probiotic on the symptoms and small intestinal bacterial overgrowth in constipation-predominant irritable bowel syndrome: a randomized, simple-blind, placebo-controlled trial. Am J Clin Med Res 3:18–23. https://doi.org/10.12691/ajcmr-3-2-1

    Article  Google Scholar 

  13. Shen NT, Maw A, Tmanova LL, Pino A, Ancy K, Crawford CV et al (2017) Timely use of probiotics in hospitalized adults prevents Clostridium difficile infection: a systematic review with meta-regression analysis. Gastroenterology 152:1889–1900.e9. https://doi.org/10.1053/j.gastro.2017.02.003

    Article  Google Scholar 

  14. Hayes SR, Vargas AJ (2016) Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Explor J Sci Heal 12:463–466. https://doi.org/10.1016/j.explore.2016.08.015

    Article  Google Scholar 

  15. Lunia MK, Sharma BC, Sharma P, Sachdeva S, Srivastava S (2014) Probiotics prevent hepatic encephalopathy in patients with cirrhosis: a randomized controlled trial. Clin Gastroenterol Hepatol 12:1003–1008.e1. https://doi.org/10.1016/j.cgh.2013.11.006

    Article  Google Scholar 

  16. Maslennikov R, Pavlov C, Ivashkin V (2018) Small intestinal bacterial overgrowth in cirrhosis: systematic review and meta-analysis. Hepatol Int 12:567–576. https://doi.org/10.1007/s12072-018-9898-2

    Article  Google Scholar 

  17. Guarner F, Sanders MH (2017) Probiotics and prebiotics. World Gastroenterology Organisation Global Guidelines https://wwwworldgastroenterologyorg/guidelines/global-guidelines/probiotics-and-prebiotics/probiotics-and-prebiotics-english Accessed 16 October 2019

  18. Markets and Markets (2017) Probiotics market by application (functional food & beverages [dairy products, non-dairy beverages, infant formula, cereals], dietary supplements, feed), ingredient (bacteria, yeast), form (dry, liquid), end user, and region - forecast to 2023 https://wwwmarketsandmarketscom/Market-Reports/probiotic-market-advanced-technologies-and-global-market-69html Accessed 16 October 2019

  19. California Dairy Research Foundation (2015) Products with probiotics. http://cdrforg/home/checkoff-investments/usprobiotics/products-with-probiotics/ Accessed 16 October 2019

  20. Ramos PE, Cerqueira MA, Teixeira JA, Vicente AA (2018) Physiological protection of probiotic microcapsules by coatings. Crit Rev Food Sci Nutr 58:1864–1877. https://doi.org/10.1080/10408398.2017.1289148

    Article  CAS  Google Scholar 

  21. European Food Safety Authority (2013) Scientific opinion on the substantiation of a health claim related to a combination of Bifidobacterium longum LA 101, Lactobacillus helveticus LA 102, Lactococcus lactis LA 103 and Streptococcus thermophillus LA 104 and reducing intestinal discomfort pursuant to Article 13(5) of Regulation (EC) No 1924/20061. EFSA J 11:3085. https://doi.org/10.2903/j.efsa.2013.3085

    Article  Google Scholar 

  22. US National Center for Complementary and Alternative Medicine (2016) Probiotics: what you need to know. U.S. Department of Health and Human Services https://nccih.nih.gov/health/probiotics/introduction.htm Accessed 16 October 2019

  23. European Directorate for the Quality of Medicines (2018) Live Biotherapeutic Products (LBPs): European Pharmacopoeia Commission sets unprecedented quality requirements. https://www.edqm.eu/en/news/live-biotherapeutic-products-lbps-unprecedented-quality-requirements-ph-eur-commission Accessed 16 October 2019

  24. Chapman CMC, Gibson GR, Rowland I (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50:1–17. https://doi.org/10.1007/s00394-010-0166-z

    Article  CAS  Google Scholar 

  25. Toscano M, De Grandi R, Pastorelli L, Vecchi M, Drago L (2017) A consumer’s guide for probiotics: 10 golden rules for a correct use. Dig Liver Dis 49:1177–1184. https://doi.org/10.1016/j.dld.2017.07.011

    Article  Google Scholar 

  26. Drago L, De Vecchi E, Gabrieli A, De Grandi R, Toscano M (2015) Immunomodulatory effects of Lactobacillus salivarius LS01 and Bifidobacterium breve BR03, alone and in combination, on peripheral blood mononuclear cells of allergic asthmatics. Allergy Asthma Immunol Res 7:409–413. https://doi.org/10.4168/aair.2015.7.4.409

    Article  CAS  Google Scholar 

  27. Chapman CMC, Gibson GR, Rowland I (2012) In vitro evaluation of single- and multi-strain probiotics: inter-species inhibition between probiotic strains, and inhibition of pathogens. Anaerobe 18:405–413. https://doi.org/10.1016/j.anaerobe.2012.05.004

    Article  CAS  Google Scholar 

  28. Vitali B, Candela M, Matteuzzi D, Brigidi P (2003) Quantitative detection of probiotic Bifidobacterium strains in bacterial mixtures by using real-time PCR. Syst Appl Microbiol 26:269–276. https://doi.org/10.1078/072320203322346128

    Article  CAS  Google Scholar 

  29. Mohamed W, Rabeea O, AbuShady H, Youssef H (2017) Development of novel multispecies probiotic mixture. Egypt J Exp Biol 13:245–258. https://doi.org/10.5455/egyjebb.20170703072042

    Article  Google Scholar 

  30. Collado MC, Jalonen L, Meriluoto J, Salminen S (2006) Protection mechanism of probiotic combination against human pathogens: in vitro adhesion to human intestinal mucus. Asia Pac J Clin Nutr 15:570–575 http://apjcn.nhri.org.tw/server/APJCN/15/4/570.pdf

    Google Scholar 

  31. Drago L, Gismondo MR, Lombardi A, de Haën C, Gozzini L (1997) Inhibition of in vitro growth of enteropathogens by new Lactobacillus isolates of human intestinal origin. FEMS Microbiol Lett 153:455–463. https://doi.org/10.1016/S0378-1097(97)00289-9

    Article  CAS  Google Scholar 

  32. Ridwan BU, Koning CJM, Besselink MGH, Timmerman HM, Brouwer EC, Verhoef J, Gooszen HG, Akkermans LM (2008) Antimicrobial activity of a multispecies probiotic (Ecologic 641) against pathogens isolated from infected pancreatic necrosis. Lett Appl Microbiol 46:61–67. https://doi.org/10.1111/j.1472-765X.2007.02260.x

    Article  CAS  Google Scholar 

  33. Mikelsaar M, Lazar V, Onderdonk A, Donelli G (2011) Do probiotic preparations for humans really have efficacy? Microb Ecol Health Dis 22:1. https://doi.org/10.3402/mehd.v22i0.10128

    Article  Google Scholar 

  34. Sur D, Manna B, Niyogi SK, Ramamurthy T (2011) Role of probiotic in preventing acute diarrhoea in children: a community-based, randomized, double-blind placebo-controlled field trial in an urban slum. Epidemiol Infect 139:919–926. https://doi.org/10.1017/S0950268810001780

    Article  CAS  Google Scholar 

  35. Mazurak N, Broelz E, Storr M, Enck P (2015) Probiotic therapy of the irritable bowel syndrome: why is the evidence still poor and what can be done about it? J Neurogastroenterol Motil 21:471–485. https://doi.org/10.5056/jnm15071

    Article  Google Scholar 

  36. Hou RCW, Lin MY, Wang MMC, Tzen JTC (2003) Increase of viability of entrapped cells of Lactobacillus delbrueckii ssp. bulgaricus in artificial sesame oil emulsions. J Dairy Sci 86:424–428. https://doi.org/10.3168/jds.s0022-0302(03)73620-0

    Article  CAS  Google Scholar 

  37. Liu H, Cui SW, Chen M, Ii Y, Liang R, Xu F et al (2017) Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: a review. Crit Rev Food Sci Nutr 59:2863–2878. https://doi.org/10.1080/10408398.2017.1377684

    Article  Google Scholar 

  38. Dong QY, Chen MY, Xin Y, Qin X-Y, Cheng Z, Shi L-E et al (2013) Alginate-based and protein-based materials for probiotics encapsulation: a review. Int J Food Sci Technol 48:1339–1351. https://doi.org/10.1111/ijfs.12078

    Article  CAS  Google Scholar 

  39. de Vos P, Faas MM, Spasojevic M, Sikkema J (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20:292–302. https://doi.org/10.1016/j.idairyj.2009.11.008

    Article  CAS  Google Scholar 

  40. Klayraung S, Viernstein H, Okonogi S (2009) Development of tablets containing probiotics: effects of formulation and processing parameters on bacterial viability. Int J Pharm 370:54–60. https://doi.org/10.1016/j.ijpharm.2008.11.004

    Article  CAS  Google Scholar 

  41. Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 73:399s–405s. https://doi.org/10.1093/ajcn/73.2.399s

    Article  CAS  Google Scholar 

  42. Takahashi N, Xiao J-Z, Miyaji K, Yaeshiima T, Hiramatsu A, Iwatsuki K (2004) Selection of acid tolerant bifidobacteria and evidence for a low-pH-inducible acid tolerance response in Bifidobacterium longum. J Dairy Res 71:340–345

    Article  CAS  Google Scholar 

  43. Salas-Jara M, Ilabaca A, Vega M, García A (2016) Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms 4:35. https://doi.org/10.3390/microorganisms4030035

    Article  CAS  Google Scholar 

  44. Burgain J, Gaiani C, Linder M, Scher J (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J Food Eng 104:467–483. https://doi.org/10.1016/j.jfoodeng.2010.12.031

    Article  CAS  Google Scholar 

  45. Groboillot AF, Champagne CP, Darling GD, Poncelet D, Neufeld RJ (1993) Membrane formation by interfacial cross-linking of chitosan for microencapsulation of Lactococcus lactis. Biotechnol Bioeng 42:1157–1163. https://doi.org/10.1002/bit.260421005

    Article  CAS  Google Scholar 

  46. Ramos PE, Abrunhosa L, Pinheiro A, Cerqueira MA, Motta C, Castanheira I, Chandra-Hioe MV, Arcot J, Teixeira JA, Vicente AA (2016) Probiotic-loaded microcapsule system for human in situ folate production: encapsulation and system validation. Food Res Int 90:25–32. https://doi.org/10.1016/j.foodres.2016.10.036

    Article  CAS  Google Scholar 

  47. Ramos PE, Cerqueira MA, Cook MT, Bourbon AI, Khutoryanskiy VV, Charalampoulos D, Teixeira JA, Vicente AA (2016) Development of an immobilization system for in situ micronutrients release. Food Res Int 90:121–132. https://doi.org/10.1016/j.foodres.2016.10.050

    Article  CAS  Google Scholar 

  48. Navarro JB, Mashburn-Warren L, Bakaletz LO, Bailey MT, Goodman SD (2017) Enhanced probiotic potential of Lactobacillus reuteri when delivered as a biofilm on dextranomer microspheres that contain beneficial cargo. Front Microbiol 8:489. https://doi.org/10.3389/fmicb.2017.00489

    Article  Google Scholar 

  49. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193. https://doi.org/10.1128/cmr.15.2.167-193.2002

    Article  CAS  Google Scholar 

  50. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209. https://doi.org/10.1146/annurev.micro.56.012302.160705

    Article  CAS  Google Scholar 

  51. Davies DG, Geesey GG (1995) Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61:860–867

    Article  CAS  Google Scholar 

  52. Macfarlane S, Dillon JF (2007) Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 102:1187–1196. https://doi.org/10.1111/j.1365-2672.2007.03287.x

    Article  CAS  Google Scholar 

  53. Sauer K, Camper AK, Ehrlich GD, William J, Davies DG et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154. https://doi.org/10.1128/JB.184.4.1140

    Article  CAS  Google Scholar 

  54. Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864. https://doi.org/10.1038/35101627

    Article  CAS  Google Scholar 

  55. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79. https://doi.org/10.1146/annurev.micro.54.1.49

    Article  Google Scholar 

  56. Allison DG, Ruiz B, Sanjose C, Jaspe A, Gilbert P (1998) Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 167:179–184. https://doi.org/10.1016/S0378-1097(98)00386-3

    Article  CAS  Google Scholar 

  57. Cheow WS, Hadinoto K (2013) Biofilm-like Lactobacillus rhamnosus probiotics encapsulated in alginate and carrageenan microcapsules exhibiting enhanced thermotolerance and freeze-drying resistance. Biomacromolecules 14:3214–3222. https://doi.org/10.1021/bm400853d

    Article  CAS  Google Scholar 

  58. Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15. https://doi.org/10.1016/j.ijfoodmicro.2006.07.008

    Article  Google Scholar 

  59. Pepoyan AZ, Manvelyan AM, Balayan MH, Galstyan S, Tsaturyan VV, Grigoryan B, Chikindas ML (2019) Low-dose electron-beam irradiation for the improvement of biofilm formation by probiotic Lactobacilli. Probiotics Antimicrob Proteins:1–5. https://doi.org/10.1007/s12602-019-09566-1

  60. Algburi A, Comito N, Kashtanov D, Dicks LMT, Chikindas ML (2016) Control of biofilm formation: antibiotics and beyond. Appl Environ Microbiol 83:e02508–e02516. https://doi.org/10.1128/AEM.02508-16

    Article  Google Scholar 

  61. Tabak M, Scher K, Hartog E, Romling U, Matthews KR, Chikindas ML, Yaron S (2007) Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. FEMS Microbiol Lett 267:200–206. https://doi.org/10.1111/j.1574-6968.2006.00547.x

    Article  CAS  Google Scholar 

  62. Zhang L, Mah TF (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190:4447–4452. https://doi.org/10.1128/2FJB.01655-07

    Article  CAS  Google Scholar 

  63. Grossova M, Rysavka P, Marova I (2017) Probiotic biofilm on carrier surface: a novel promising application for food industry. Acta Aliment 46:439–448. https://doi.org/10.1556/066.2017.46.4.6

    Article  CAS  Google Scholar 

  64. Aoudia N, Rieu A, Briandet R, Deschamps J, Chluba J, Jego G, Garrido C, Guzzo J (2016) Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiol 53:51–59. https://doi.org/10.1016/j.fm.2015.04.009

    Article  CAS  Google Scholar 

  65. Klopper KB, Bester E, Deane SM, Wolfaardt GM, Dicks LMT (2019) Survival of planktonic and sessile cells of Lactobacillus rhamnosus and Lactobacillus reuteri upon exposure to simulated fasting-state gastrointestinal conditions. Probiotics Antimicro Proteins 11:594–603. https://doi.org/10.1007/s12602-018-9426-7

    Article  CAS  Google Scholar 

  66. Yahav S, Berkovich Z, Ostrov I, Ram Reifen R, Shemesh M (2018) Encapsulation of beneficial probiotic bacteria in extracellular matrix from biofilm-forming Bacillus subtilis. Artif Cells Nanomed Biotechnol 52:S974–S982. https://doi.org/10.1080/21691401.2018.1476373

    Article  CAS  Google Scholar 

  67. Viramontes Hörner D, Avery A, Stow R (2017) The effects of probiotics and symbiotics on risk factors for hepatic encephalopathy: a systematic review. J Clin Gastroenterol 51:312–323. https://doi.org/10.1097/MCG.0000000000000789

    Article  CAS  Google Scholar 

  68. Zhang MM, Qian W, Qin YY, He J, Zhou YH (2015) Probiotics in Helicobacter pylori eradication therapy: a systematic review and meta-analysis. World J Gastroenterol 21:4345–4357. https://doi.org/10.3748/wjg.v21.i14.4345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri M. Poluektov.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trush, E.A., Poluektova, E.A., Beniashvilli, A.G. et al. The Evolution of Human Probiotics: Challenges and Prospects. Probiotics & Antimicro. Prot. 12, 1291–1299 (2020). https://doi.org/10.1007/s12602-019-09628-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09628-4

Keywords

Navigation