Skip to main content
Log in

Expression and Purification of the Main Component Contained in Camel Milk and Its Antimicrobial Activities Against Bacterial Plant Pathogens

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Lactoferrin is the most dominant protein in milk after casein. This protein plays a crucial role in many biological processes including the regulation of iron metabolism, induction and modulation of the immune system, the primary defense against microorganisms, inhibiting lipid peroxidation and presenting antimicrobial activity against various pathogens such as parasites, fungi, bacteria, and viruses. The major antimicrobial effect of lactoferrin is related to its N-terminal tail where different peptides for instance lactoferricin and lactoferrampin which are important for their antimicrobial abilities are present. The growth rate of bacterial cells in camel milk is lower than that of the cow milk due to having more antimicrobial compounds. In this study, we have fused a codon-optimized partial camel lactoferrcin and lactoferrampin DNA sequences in order to construct a fused peptide via a lysine. This chimeric 42-mer peptide consists of complete and partial amino acid sequence of camel lactoferrampin and lactoferricin, respectively. Human embryonic kidney 293 (HEK-293) cells were used for synthesizing this recombinant peptide. Finally, the antibacterial activities of this constructed peptide were investigated under in vitro condition. The result showed that, all construction, cloning and expression processes were successfully performed in HEK-293. One His-tag tail was added to the chimera in order to optimize the isolation and purification processes and also reduce the cost of production. Additionally, His-tag retained the antimicrobial activity of the chimera. The antimicrobial tests showed that the growth rate in the majority of bacterial plant pathogens, including gram negative and positive bacteria, was inhibited by recombinant chimera as the level of MIC values were evaluated between 0.39 and 25.07 μg/ml for different bacterial isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parc AL, Karav S, Rouquié C, Maga EA, Bunyatratchata A, Barile D (2017) Characterization of recombinant human lactoferrin N-glycans expressed in the milk of transgenic cows. PLoS One 12(2):e0171477. https://doi.org/10.1371/journal.pone.0171477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Khaldi N, Shields DC (2001) Shift in the isoelectric-point of milk proteins as a consequence of adaptive divergence between the milks of mammalian species. Biol Direct 6(1):40. https://doi.org/10.1186/1745-6150-6-40

    Article  Google Scholar 

  3. Gupta C, Prakash D (2017) Therapeutic potential of milk whey. Beverages 3(3):31. https://doi.org/10.3390/beverages3030031

    Article  Google Scholar 

  4. Rachman AB, Maheswari RR, Bachroem MS (2015) Composition and isolation of lactoferrin from colostrum and milk of various goat breeds. Procedia Food Sci 3:200–210. https://doi.org/10.1016/j.profoo.2015.01.022

    Article  Google Scholar 

  5. Legrand D, Pierce A, Elass E, Carpentier M, Mariller C, Mazurier J (2008) Lactoferrin structure and functions. In: Bösze Z (ed) Bioactive components of milk. Advances in Experimental Medicine and Biology, vol 606. Springer, New York, pp 163–194. https://doi.org/10.1007/978-0-387-74087-4_6.

    Chapter  Google Scholar 

  6. Actor JK, Hwang SA, Kruzel ML (2009) Lactoferrin as a natural immune modulator. Curr Pharm Des 15(17):1956–1973. https://doi.org/10.2174/138161209788453202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Artym J (2010) The role of lactoferrin in the iron metabolism. Part II. Antimicrobial and antiinflammatory effect of lactoferrin by chelation of iron. Postepy Hig Med Dosw 64:604–616

    Google Scholar 

  8. Cassat JE, Skaar EP (2013) Iron in infection and immunity. Cell Host Microbe 13(5):509–519. https://doi.org/10.1016/j.chom.2013.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. González-Chávez SA, Arévalo-Gallegos S, Rascón-Cruz Q (2009) Lactoferrin: structure, function and applications. J Antimicrob Agents 33(4):301–3e1. https://doi.org/10.1016/j.ijantimicag.2008.07.020

    Article  CAS  Google Scholar 

  10. Tomita M, Wakabayashi H, Shin K, Yamauchi K, Yaeshima T, Iwatsuki K (2009) Twenty-five years of research on bovine lactoferrin applications. Biochimie 91(1):52–57. https://doi.org/10.1016/j.biochi.2008.05.021

    Article  CAS  PubMed  Google Scholar 

  11. Bruni N, Capucchio MT, Biasibetti E, Pessione E, Cirrincione S, Giraudo L, Corona A, Dosio F (2016) Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules 21(6):752. https://doi.org/10.3390/molecules21060752

    Article  CAS  Google Scholar 

  12. Legrand D, Elass E, Carpentier M, Mazurier J (2005) Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci 62(22):2549–2559. https://doi.org/10.1007/s00018-005-5370-2

    Article  CAS  PubMed  Google Scholar 

  13. Sijbrandij T, Ligtenberg AJ, Nazmi K, Veerman EC, Bolscher JG, Bikker FJ (2017) Effects of lactoferrin derived peptides on simulants of biological warfare agents. World J Microbiol Biotechnol 33(1):3. https://doi.org/10.1007/s11274-016-2171-8

    Article  CAS  PubMed  Google Scholar 

  14. Sinha M, Kaushik S, Kaur P, Sharma S, Singh TP (2013) Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. Int J Pept 390230, 12 pages:1–12. https://doi.org/10.1155/2013/390230

    Article  CAS  Google Scholar 

  15. Bolscher JG, Adão R, Nazmi K, van den Keybus PA, van’t Hof W, Amerongen AV, Bastos M, Veerman EC (2009) Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides. Biochimie 91(1):123–132. https://doi.org/10.1016/j.biochi.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  16. Tang XS, Tang ZR, Wang SP, Feng ZM, Zhou D, Li TJ, Yin YL (2012) Expression, purification, and antibacterial activity of bovine lactoferrampin–lactoferricin in Pichia pastoris. Appl Biochem Biotechnol 166(3):640–651. https://doi.org/10.1007/s12010-011-9455-0

    Article  CAS  PubMed  Google Scholar 

  17. Dheeb BI, Al-Mudallal NH, Salman ZA, Ali M, Nouri MA, Hussain HT, Abdulredha SS (2015) The inhibitory effects of human, camel and cow’s milk against some pathogenic fungi in Iraq. Jordan J Biol Sci 8(2):89–93. https://doi.org/10.12816/0027553

    Article  CAS  Google Scholar 

  18. Lin YC, Boone M, Meuris L, Lemmens I, Van Roy N, Soete A, Reumers J, Moisse M, Plaisance S, Drmanac R, Chen J (2014) Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun 5:4767. https://doi.org/10.1038/ncomms5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51(3):187–200. https://doi.org/10.1016/j.vascn.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  20. Chen GH, Chen WM, Huang GT, Chen YW, Jiang ST (2009) Expression of recombinant antibacterial lactoferricin-related peptides from Pichia pastoris expression system. J Agric Food Chem 57(20):9509–9515. https://doi.org/10.1021/jf902611h

    Article  CAS  PubMed  Google Scholar 

  21. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385. https://doi.org/10.1093/nar/gkg520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  23. Jordan M, Schallhorn A, Wurm FM (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 24(4):596–601. https://doi.org/10.1093/nar/24.4.596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schägger H, Aquila H, Von Jagow G (1988) Coomassie blue-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for direct visualization of polypeptides during electrophoresis. Anal Biochem 173(1):201–205. https://doi.org/10.1016/0003-2697(88)90179-0

    Article  PubMed  Google Scholar 

  25. Vipra A, Desai SN, Junjappa RP, Roy P, Poonacha N, Ravinder P, Sriram B, Padmanabhan S (2013) Determining the minimum inhibitory concentration of bacteriophages: potential advantages. Adv Microbiol 3(02):181–190. https://doi.org/10.4236/aim.2013.32028

    Article  Google Scholar 

  26. Chahardooli M, Niazi A, Aram F, Sohrabi SM (2016) Expression of recombinant Arabian camel lactoferricin-related peptide in Pichia pastoris and its antimicrobial identification. J Sci Food Agric 96(2):569–575. https://doi.org/10.1002/jsfa.7125

    Article  PubMed  Google Scholar 

  27. Xu XW, Pei SJ, Miao XR, Yu WF (2009) Human signal peptide had advantage over mouse in secretory expression. Histochem Cell Biol 132(2):239–246. https://doi.org/10.1007/s00418-009-0602-4

    Article  CAS  PubMed  Google Scholar 

  28. Agrios GN (2005) Plant pathology, 5th edn. Academic Press, San Diego

    Google Scholar 

  29. Kovalskaya N, Hammond RW (2009) Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr Purif 63(1):12–17. https://doi.org/10.1016/j.pep.2008.08.013

    Article  CAS  PubMed  Google Scholar 

  30. Chen GH, Yin LJ, Chiang IH, Jiang ST (2007) Expression and purification of goat lactoferrin from Pichia pastoris expression system. J Food Sci 72:67–71. https://doi.org/10.1111/j.1750-3841.2007.00281.x

    Article  CAS  Google Scholar 

  31. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30(3):131–141. https://doi.org/10.1016/j.it.2008.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Strøm MB, Svendsen JS, Rekdal Ø (2000) Antibacterial activity of 15-residue lactoferricin derivatives. Chem Biol Drug Des 56(5):265–274. https://doi.org/10.1034/j.1399-3011.2000.00770.x

    Article  Google Scholar 

  33. Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action. BBA Biomembranes 1758(9):1184–1202. https://doi.org/10.1016/j.bbamem.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  34. Phoenix DA, Dennison SR, Harris F (2013) Models for the membrane interactions of antimicrobial peptides. In: Phoenix DA, Dennison SR, Harris F (eds) Antimicrobial peptides. Wiley, Weinheim, pp 145–180. https://doi.org/10.1002/9783527652853.index

    Chapter  Google Scholar 

  35. Rossi P, Giansanti F, Boffi A, Ajello M, Valenti P, Chiancone E, Antonini G (2002) Ca2+ binding to bovine lactoferrin enhances protein stability and influences the release of bacterial lipopolysaccharide. Biochem Cell Biol 80(1):41–48. https://doi.org/10.1139/o01-209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hesamoddin Shahriari for editing the manuscript.

Funding

This PhD project is financially supported by the Deputy of Research and Technology, Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Mamarabadi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanhaeian, A., Shahriari Ahmadi, F., Sekhavati, M.H. et al. Expression and Purification of the Main Component Contained in Camel Milk and Its Antimicrobial Activities Against Bacterial Plant Pathogens. Probiotics & Antimicro. Prot. 10, 787–793 (2018). https://doi.org/10.1007/s12602-018-9416-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9416-9

Keywords

Navigation