Skip to main content

Advertisement

Log in

Characterization of Functional, Safety, and Probiotic Properties of Enterococcus faecalis AG5 Isolated From Wistar Rat, Demonstrating Adherence to HCT 116 Cells and Gastrointestinal Survivability

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Gut microbiota remains a prominent source for a diverse range of potential probiotics. In this context, the current study explored the rectal region of experimental Wistar rat for the isolation of potent probiotic. Sixteen lactic acid bacteria (LAB), from rectal swab of Wistar rats, were subjected to evaluation of probiotic properties. Among all, AG5 was found unique with consistent probiotic properties and was further identified as Enterococcus faecalis AG5 (NCBI accession number KT248537) using 16S rDNA sequencing, followed by BLAST analysis. Since the Enterococci strains inhibit various food-borne pathogens efficiently while proving itself as a safe probiotic candidate, the study further evaluated the safety of the strain AG5 using primer specific PCR amplification which revealed the existence of gene encoding gelE, asa1, efaA, ace, vanA, and vanB and negative for cylA, hyl, and esp respectively. SEM analysis confirmed the adherence ability of AG5 to HCT 116 cells. Adherence was found to be non-colonial and scattered manner. Furthermore, the strain demonstrated a significant survivability during simulated gastrointestinal transit. Taken together, the E. faecalis AG5 was found potential probiotic candidate with future implication in both food and health industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Daliri EB-M, Lee BH (2015) New perspectives on probiotics in health and disease. Food Sci Hum Wellness 4(2):56–65. https://doi.org/10.1016/j.fshw.2015.06.002

    Article  Google Scholar 

  2. Sornplang P, Piyadeatsoontorn S (2016) Probiotic isolates from unconventional sources: a review. J Anim Sci Technol 58(1):26–37. https://doi.org/10.1186/s40781-016-0108-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramos CL, Thorsen L, Schwan RF, Jespersen L (2013) Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol 36(1):22–29. https://doi.org/10.1016/j.fm.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  4. O’Bryan CA, Pak D, Crandall PG, Lee SO, Ricke SC (2013) The role of prebiotics and probiotics in human health. J Prob Health 01:1–8

    Google Scholar 

  5. Cebrián R, Baños A, Valdivia E et al (2012) Characterization of functional, safety, and probiotic properties of Enterococcus faecalis UGRA10, a new AS-48-producer strain. Food Microbiol 30:59–67

    Article  PubMed  Google Scholar 

  6. Martín-Platero AM, Valdivia E, Maqueda M, Martínez-Bueno M (2009) Characterization and safety evaluation of enterococci isolated from Spanish goats’ milk cheeses. Int J Food Microbiol 132(1):24–32. https://doi.org/10.1016/j.ijfoodmicro.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  7. Sarantinopoulos P, Leroy F, Leontopoulou E et al (2002) Bacteriocin production by Enterococcus faecium FAIR-E 198 in view of its application as adjunct starter in Greek Feta cheese making. Int J Food Microbiol 72:125–136

    Article  CAS  PubMed  Google Scholar 

  8. Lozano C, González-Barrio D, García JT et al (2015) Detection of vancomycin-resistant Enterococcus faecalis ST6-vanB2 and E. faecium ST915-vanA in faecal samples of wild Rattus rattus in Spain. Vet Microbiol 177:168–174

    Article  CAS  PubMed  Google Scholar 

  9. Nueno-Palop C, Narbad A (2011) Probiotic assessment of Enterococcus faecalis CP58 isolated from human gut. Int J Food Microbiol 145(2-3):390–394. https://doi.org/10.1016/j.ijfoodmicro.2010.12.029

    Article  CAS  PubMed  Google Scholar 

  10. Grande Burgos MJ, Pulido RP, Del Carmen López Aguayo M et al (2014) The cyclic antibacterial peptide enterocin AS-48: isolation, mode of action and possible food applications. Int J Mol Sci 15:22706–22727

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thera M (2016) SymbioPharm : healing with bacteria since 1954. 1–4

  12. Kitz R, Martens U, Zieseniß E et al (2012) Probiotic E.faecalis—adjuvant therapy in children with recurrent rhinosinusitis. Open Med 7:362–365

    Article  Google Scholar 

  13. Morelli L, Capurso L (2012) FAO/WHO guidelines on probiotics. J Clin Gastroenterol 46:S1–S2. https://doi.org/10.1097/MCG.0b013e318269fdd5

    Article  PubMed  Google Scholar 

  14. Foulquié Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106(1):1–24. https://doi.org/10.1016/j.ijfoodmicro.2005.06.026

    Article  PubMed  Google Scholar 

  15. Franz CMAP, Van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31(3):293–310. https://doi.org/10.1111/j.1574-6976.2007.00064.x

    Article  CAS  PubMed  Google Scholar 

  16. Sieladie DV, Zambou NF, Kaktcham PM et al (2011) Probiotic properties of lactobacilli strains isolated from raw cow milk in the western highlands of Cameroon. Innov Rom Food Biotechnol 9:12–28

    CAS  Google Scholar 

  17. Ghosh A, Sukumar G (2010) Study of the probiotic potential of lactic acid bacteria isolated from a variety of Indian fermented food. J Pharm Res 3:2254–2257

    Google Scholar 

  18. Kumar A, Kumar D (2015) Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe 33:117–123. https://doi.org/10.1016/j.anaerobe.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  19. Kiehlbauch JA, Hannett GE, Salfinger M, Archinal W, Monserrat C, Carlyn C (2000) Use of the national committee for clinical laboratory standards guidelines for disk diffusion susceptibility testing in New York state laboratories. J Clin Microbiol 38(9):3341–3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barry AL, Craig WA, Nadler H, et al (1999) Methods for determining bactericidal activity of antimicrobial agents; approved guideline. Natl Comm Clin Lab Stand 19

  21. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Antibiotic susceptibility of potentially probiotic Lactobacillus species. J Food Prot 61(12):1636–1643. https://doi.org/10.4315/0362-028X-61.12.1636

    Article  CAS  PubMed  Google Scholar 

  22. CLSI (2015) M02-A12; performance standards for antimicrobial disk susceptibility tests; approved standard—twelfth edition. Clin Lab Stand Inst Webb, H. E., Granier, S. A., Mrult, M., Millemann,

  23. A.O. A.C. (1990) Official methods of analysis. doi:https://doi.org/10.1520/G0154-12A

  24. Subramanian MR, Talluri S, Christopher LP (2015) Production of lactic acid using a new homofermentative Enterococcus faecalis isolate. Microb Biotechnol 8:221–229

    Article  CAS  PubMed  Google Scholar 

  25. Karasová P, Spiwok V, Malá S et al (2002) Beta-galactosidase activity in psychrotrophic microorganisms and their potential use in food industry. Czech J Food Sci 20:43–47

    Article  Google Scholar 

  26. Green M, Sambrook J (2012) Molecular cloning

  27. Dubey V, Ghosh AR, Bishayee K, Khuda-Bukhsh AR (2016) Appraisal of the anti-cancer potential of probiotic Pediococcus pentosaceus GS4 against colon cancer: in vitro and in vivo approaches. J Funct Foods 23:66–79. https://doi.org/10.1016/j.jff.2016.02.032

    Article  CAS  Google Scholar 

  28. Mathara JM, Schillinger U, Guigas C et al (2008) Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int J Food Microbiol 126:57–64

    Article  CAS  PubMed  Google Scholar 

  29. Succi M, Tremonte P, Reale A et al (2005) Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol Lett 244:129–137

    Article  CAS  PubMed  Google Scholar 

  30. Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 73

  31. Hassanzadazar H, Ehsani A, Mardani K, Hesari J (2012) Investigation of antibacterial , acid and bile tolerance properties of lactobacilli isolated from Koozeh cheese. Vet Res Forum 3:181–185

  32. Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29(4):625–651. https://doi.org/10.1016/j.femsre.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  33. de Vrese M, Stegelmann A, Richter B et al (2001) Probiotics—compensation for lactase insufficiency. Am J Clin Nutr 73(2 Suppl):421S–429S

    Article  PubMed  Google Scholar 

  34. Gomes BC, Esteves CT, Palazzo ICV, Darini ALC, Felis GE, Sechi LA, Franco BDGM, de Martinis ECP (2008) Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiol 25(5):668–675. https://doi.org/10.1016/j.fm.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  35. Sivieri K, Spinardi-Barbisan ALT, Barbisan LF, Bedani R, Pauly ND, Carlos IZ, Benzatti F, Vendramini RC, Rossi EA (2008) Probiotic Enterococcus faecium CRL 183 inhibit chemically induced colon cancer in male wistar rats. Eur Food Res Technol 228(2):231–237. https://doi.org/10.1007/s00217-008-0927-6

    Article  CAS  Google Scholar 

  36. Gu RX, Yang ZQ, Li ZH, Chen SL, Luo ZL (2008) Probiotic properties of lactic acid bacteria isolated from stool samples of longevous people in regions of Hotan, Xinjiang and Bama, Guangxi, China. Anaerobe 14(6):313–317. https://doi.org/10.1016/j.anaerobe.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  37. Gilliland SE (1979) Beneficial interrelationships between certain microorganisms and humans: candidate microorganisms for uses as dietary adjuncts. J Food Prot 42(2):164–167. https://doi.org/10.4315/0362-028X-42.2.164

    Article  CAS  PubMed  Google Scholar 

  38. Patel HM, Pandiella SS, Wang RH, Webb C (2004) Influence of malt, wheat, and barley extracts on the bile tolerance of selected strains of lactobacilli. Food Microbiol 21(1):83–89. https://doi.org/10.1016/S0740-0020(03)00016-9

    Article  Google Scholar 

  39. Creti R, Imperi M, Bertuccini L et al (2004) Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J Med Microbiol 53:13–20

    Article  CAS  PubMed  Google Scholar 

  40. Pillar CM, Gilmore MS (2004) Enterococcal virulence—pathogenicity island of E. Faecalis. Front Biosci 9(1-3):2335–2346. https://doi.org/10.2741/1400

    Article  CAS  PubMed  Google Scholar 

  41. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84(5):759–768. https://doi.org/10.1046/j.1365-2672.1998.00407.x

    Article  CAS  PubMed  Google Scholar 

  42. Juntunen M, Kirjavainen PV, Ouwehand AC et al (2001) Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection. Clin Diagn Lab Immunol 8:293–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bednarska NG, Schymkowitz J, Rousseau F, Van Eldere J (2013) Protein aggregation in bacteria: the thin boundary between functionality and toxicity. Microbiology 159(Pt_9):1795–1806. https://doi.org/10.1099/mic.0.069575-0

    Article  CAS  PubMed  Google Scholar 

  44. Franz CMAP, Stiles ME, Schleifer KH, Holzapfel WH (2003) Enterococci in foods—a conundrum for food safety. Int J Food Microbiol 88(2-3):105–122. https://doi.org/10.1016/S0168-1605(03)00174-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Prof. Anu Baisel, Senior Assistant Professor, Department of English, School of Social Sciences and Languages, VIT University for English and grammar correction.

Funding

We would like to express gratitude to VIT University, Vellore, for financial support (RGEMS-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Ranjan Ghosh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.K., Ghosh, A.R. Characterization of Functional, Safety, and Probiotic Properties of Enterococcus faecalis AG5 Isolated From Wistar Rat, Demonstrating Adherence to HCT 116 Cells and Gastrointestinal Survivability. Probiotics & Antimicro. Prot. 10, 435–445 (2018). https://doi.org/10.1007/s12602-018-9387-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9387-x

Keywords

Navigation