Skip to main content
Log in

Probiotic Properties and Cellular Antioxidant Activity of Lactobacillus plantarum MA2 Isolated from Tibetan Kefir Grains

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Lactobacillus plantarum MA2 was isolated from traditional Chinese Tibetan kefir grains. Its antioxidant properties had been demonstrated in vitro and in vivo previously. In the present study, the probiotic characteristics of this strain were further evaluated by investigating its acid and bile salt tolerances, cell surface hydrophobicity, and autoaggregation, respectively. In addition, the cellular antioxidant activity (CAA) assay was applied to test the antioxidant capacity of the isolate in different growth phases. Same method was also used to evaluate the antioxidant capacity of its fermentation supernatant, cell-free extract, and intact cell quantitatively. The results of probiotic characteristic tests showed that MA2 could survive at pH 2.5 and 0.3% bile salt. Meanwhile, the measurements of cell surface hydrophobicity and autoaggregation were 45.29 ± 2.15 and 6.30 ± 0.34%, respectively. The results of cellular antioxidant activity tests indicated that MA2 had high antioxidant potential. The CAA value of logarithmic phase cell-free extract of MA2 (39,450.00 ± 424.05 μmol quercetin equivalents/100 g sample) was significantly higher than that in stationary phase cell-free extract (3395.98 ± 126.06 μmol quercetin equivalents/100 g sample) and that of fermentation supernatant in logarithmic phase (2174.41 ± 224.47 μmol quercetin equivalents/100 g sample) (p < 0.05). The CAA method was successively applied to evaluate the antioxidant capacity of MA2 in this study, which suggests that it could be used as a useful method for lactic acid bacteria antioxidant potential evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E (2004) Oxidative stress and cell signalling. Curr Med Chem 11(9):1163–1182. https://doi.org/10.2174/0929867043365323

    Article  CAS  PubMed  Google Scholar 

  2. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. American Journal of Physiology Lung Cellular and Molecular Physiology 279:1005–1028

    Article  Google Scholar 

  3. Chen K, Thomas SR, Keaney JF (2003) Beyond LDL oxidation: ROS in vascular signal transduction. Free Radical Bio Med 35(2):117–132. https://doi.org/10.1016/S0891-5849(03)00239-9

    Article  CAS  Google Scholar 

  4. Liu H, Colavitti R, Rovira II, Finkel T (2005) Redox-dependent transcriptional regulation. Circ Res 97(10):967–974. https://doi.org/10.1161/01.RES.0000188210.72062.10

    Article  CAS  PubMed  Google Scholar 

  5. Multhaup G, Ruppert T, Schlicksupp A, Hesse L, Beher D, Masters CL, Beyreuther K (1997) Reactive oxygen species and Alzheimer’s disease. Biochem Pharmacol 54(5):533–539. https://doi.org/10.1016/S0006-2952(97)00062-2

    Article  CAS  PubMed  Google Scholar 

  6. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844. https://doi.org/10.1161/01.RES.87.10.840

    Article  CAS  PubMed  Google Scholar 

  7. Lyle AN, Griendling KK (2006) Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology 21(4):269–280. https://doi.org/10.1152/physiol.00004.2006

    Article  CAS  PubMed  Google Scholar 

  8. Briones AM, Touyz RM (2010) Oxidative stress and hypertension: current concepts. Curr Hypertens Rep 12(2):135–142. https://doi.org/10.1007/s11906-010-0100-z

    Article  CAS  PubMed  Google Scholar 

  9. Olmez I, Ozyurt H (2012) Reactive oxygen species and ischemic cerebrovascular disease. Neurochem Int 60(2):208–212. https://doi.org/10.1016/j.neuint.2011.11.009

    Article  CAS  PubMed  Google Scholar 

  10. Ahotupa M, Saxelin M, Korpela R (1996) Antioxidative properties of Lactobacillus GG. Nutr Today 31(Supplement 1):51S. https://doi.org/10.1097/00017285-199611001-00018

    Article  Google Scholar 

  11. Lin MY, Chang FJ (2000) Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digest Dis Sci 45(8):1617–1622. https://doi.org/10.1023/A:1005577330695

    Article  CAS  PubMed  Google Scholar 

  12. Das D, Goyal A (2015) Antioxidant activity and γ-aminobutyric acid (GABA) producing ability of probiotic Lactobacillus plantarum DM5 isolated from Marcha of Sikkim. LWT Food Sci Technol 61(1):263–268. https://doi.org/10.1016/j.lwt.2014.11.013

    Article  CAS  Google Scholar 

  13. Shimamura S, Abe F, Ishibashi N (1992) Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J Dairy Sci 75(12):3296–3306. https://doi.org/10.3168/jds.S0022-0302(92)78105-3

    Article  CAS  PubMed  Google Scholar 

  14. Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C, Kilk A (2002) Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol 72(3):215–224. https://doi.org/10.1016/S0168-1605(01)00674-2

    Article  CAS  PubMed  Google Scholar 

  15. Kullisaar T, Songisepp E, Aunapuu M, Kilk K, Arend A, Mikelsaar M, Rehema A, Zilmer M (2010) Complete glutathione system in probiotic Lactobacillus fermentum ME-3. Appl Biochem Microbiol 46:481–486

    Article  CAS  Google Scholar 

  16. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Man Lei Y, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089. https://doi.org/10.1126/science.aac4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blanton LV, Charbonneau MR, Salih T et al (2016) Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351:3311

    Article  Google Scholar 

  18. Mermelstein NH (2008) Determining antioxidant activity. Food Technol 11:63–66

    Google Scholar 

  19. Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55(22):8896–8907. https://doi.org/10.1021/jf0715166

    Article  CAS  PubMed  Google Scholar 

  20. Xu N, Wang YP, Xi AD, Li C (2009) Identification of lactic acid bacteria MA2 strain from kefir grains and effect on rat intestinal Flora. J Tianjin Univ Sci Technol 24:1–5

    CAS  Google Scholar 

  21. Tang W, Xing ZQ, Li C, Wang JJ, Wang YP (2016) Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2. Food Chem 221:1642–1649. https://doi.org/10.1016/j.foodchem.2016.10.124

    Article  CAS  PubMed  Google Scholar 

  22. Tang W, Xing ZQ, Hu W, Li C, Wang JJ, Wang YP (2016) Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract. Appl Microbiol Biotechnol 100(16):7193–7202. https://doi.org/10.1007/s00253-016-7581-x

    Article  CAS  PubMed  Google Scholar 

  23. Kaushik JK, Kumar A, Duary RK, Mohanty AK, Grover S, Batish VK (2009) Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS One 4(12):e8099. https://doi.org/10.1371/journal.pone.0008099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shehata MG, Sohaimy SAE, El-Sahn MA, Youssef MM (2016) Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Annals of Agricultural Sciences 61(1):65–75. https://doi.org/10.1016/j.aoas.2016.03.001

    Article  Google Scholar 

  25. Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH (2008) Cellular antioxidant activity of common fruits. J Agr Food Chem 56(18):8418–8426. https://doi.org/10.1021/jf801381y

    Article  CAS  Google Scholar 

  26. Mikelsaar M, Zilmer M (2009) Lactobacillus fermentum me-3—an antimicrobial and antioxidative probiotic. Microbial Ecology in Health & Disease 21(1):1–27. https://doi.org/10.1080/08910600902815561

    Article  CAS  Google Scholar 

  27. Hunger W, Peitersen N (1992) New technical aspects of the preparation of starter cultures. Bulletin of the International Dairy Federation 277:17–21

    Google Scholar 

  28. Kashket ER (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Lett 46(3):233–244. https://doi.org/10.1111/j.1574-6968.1987.tb02463.x

    Article  CAS  Google Scholar 

  29. Marteau P, Minekus M, Havenaar R, HIV J (1997) Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. J Dairy Sci 80(6):1031–1037. https://doi.org/10.3168/jds.S0022-0302(97)76027-2

    Article  CAS  PubMed  Google Scholar 

  30. Pérez PF, Minnaard Y, Disalvo EA, De Antoni GL (1998) Surface properties of bifidobacterial strains of human origin. Appl Environ Microbiol 64(1):21–26

    Article  PubMed  PubMed Central  Google Scholar 

  31. Re BD, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31(6):438–442

    Article  PubMed  Google Scholar 

  32. Kos B, Šušković J, Vuković S, Šimpraga M, Frece J, Matošić S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94(6):981–987. https://doi.org/10.1046/j.1365-2672.2003.01915.x

    Article  CAS  PubMed  Google Scholar 

  33. Schärzammaretti P, Job U (2003) The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophys J 85(6):4076–4092. https://doi.org/10.1016/S0006-3495(03)74820-6

    Article  Google Scholar 

  34. Bustos I, Garcíacayuela T, Hernándezledesma B, Peláez C, Requena T, Martínezcuesta MC (2012) Effect of flavan-3-ols on the adhesion of potential probiotic lactobacilli to intestinal cells. J Agr Food Chem 60(36):9082–9088. https://doi.org/10.1021/jf301133g

    Article  CAS  Google Scholar 

  35. Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72(4):728–764. https://doi.org/10.1128/MMBR.00017-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao D, Shah NP (2014) Effect of tea extract on lactic acid bacterial growth, their cell surface characteristics and isoflavone bioconversion during soymilk fermentation. Food Res Int 62:877–885. https://doi.org/10.1016/j.foodres.2014.05.004

    Article  CAS  Google Scholar 

  37. Van BP, Troost FJ, Van HS, Van dMC, de Vos WM, de Groot PJ, Hooiveld GJ, Brummer RJ, Kleerebezem M (2009) Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci U S A 106:2371–2376

    Article  Google Scholar 

  38. Kotzamanidis C, Kourelis A, Litopoulou-Tzanetaki E, Tzanetakis N, Yiangou M (2010) Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains. Int J Food Microbiol 140(2-3):154–163. https://doi.org/10.1016/j.ijfoodmicro.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  39. Corcoran BM, Stanton C, Fitzgerald GF, Ross RP (2005) Survival of probiotic Lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 71(6):3060–3067. https://doi.org/10.1128/AEM.71.6.3060-3067.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brasili E, Mengheri E, Tomassini A, Capuani G, Roselli M, Finamore A, Sciubba F, Marini F, Miccheli A (2013) Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 induce different age-related metabolic profiles revealed by 1H-NMR spectroscopy in urine and feces of mice. J Nutr 143(10):1549–1557. https://doi.org/10.3945/jn.113.177105

    Article  CAS  PubMed  Google Scholar 

  41. Collado MC, Meriluoto J, Salminen S (2007) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226:1065–1073

    Article  Google Scholar 

  42. Boris S, Suárez JE, Barbés C (1997) Characterization of the aggregation promoting factor from Lactobacillus gasseri, a vaginal isolate. J Appl Microbiol 83(4):413–420. https://doi.org/10.1046/j.1365-2672.1997.00250.x

    Article  CAS  PubMed  Google Scholar 

  43. Schachtsiek M, Hammes WP, Hertel C (2004) Characterization of Lactobacillus coryniformis DSM 20001T surface protein Cpf mediating coaggregation with and aggregation among pathogens. Appl Environ Microbiol 70(12):7078–7085. https://doi.org/10.1128/AEM.70.12.7078-7085.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schillinger U, Guigas C, Holzapfel WH (2005) In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. Int Dairy J 15(12):1289–1297. https://doi.org/10.1016/j.idairyj.2004.12.008

    Article  CAS  Google Scholar 

  45. Rijnaarts HH, Norde W, Bouwer EJ, Lyklema J, Zehnder AJ (1993) Bacterial adhesion under static and dynamic conditions. Appl Enviorn Microbiol 59:3255–3265

    Article  CAS  Google Scholar 

  46. Juárez Tomás MS, Wiese B, Nader-Macías ME (2005) Effects of culture conditions on the growth and auto-aggregation ability of vaginal Lactobacillus johnsonii CRL 1294. J Appl Microbiol 99(6):1383–1391. https://doi.org/10.1111/j.1365-2672.2005.02726.x

    Article  CAS  PubMed  Google Scholar 

  47. Vries MCD, Vaughan EE, Kleerebezem M, Vos WMD (2006) Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16(9):1018–1028. https://doi.org/10.1016/j.idairyj.2005.09.003

    Article  CAS  Google Scholar 

  48. Ramiah K, Reenena CAV, Dicks LMT (2007) Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR. Int J Food Microbiol 116(3):405–409. https://doi.org/10.1016/j.ijfoodmicro.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  49. Wang S, Zhang L, Shan Y (2015) Lactobacilli and colon carcinoma—a review. Acta Microbiol Sin 55:667–674

    CAS  Google Scholar 

  50. Zhang X, Wang Q (2010) Progress in measurement of reactive oxygen species in cells by using fluorescent probes. Modern Preventive Medicine 37:4316–4318

    CAS  Google Scholar 

  51. Spencer JPE, Abd-El-Mohsen MM, Rice-Evans C (2004) Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity. Arch Biochem Biophys 423(1):148–161. https://doi.org/10.1016/j.abb.2003.11.010

    Article  CAS  PubMed  Google Scholar 

  52. Huang H, Sun Y, Lou S, Hao L, Ye X (2014) In vitro digestion combined with cellular assay to determine the antioxidant activity in Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruits: a comparison with traditional methods. Food Chem 146:363–370. https://doi.org/10.1016/j.foodchem.2013.09.071

    Article  CAS  PubMed  Google Scholar 

  53. Liu L, Guo J, Zhang R, Wei ZC, Deng YY, Guo JX, Zhang MW (2015) Effect of degree of milling on phenolic profiles and cellular antioxidant activity of whole brown rice. Food Chem 185:318–325. https://doi.org/10.1016/j.foodchem.2015.03.151

    Article  CAS  PubMed  Google Scholar 

  54. Tsoi B, Yi RN, Cao LF, Li SB, Tan RR, Chen M, Li XX, Wang C, Li YF, Kurihara H, He RR (2015) Comparing antioxidant capacity of purine alkaloids: a new, efficient trio for screening and discovering potential antioxidants in vitro, and in vivo. Food Chem 176:411–419. https://doi.org/10.1016/j.foodchem.2014.12.087

    Article  CAS  PubMed  Google Scholar 

  55. Faller ALK, Liu RH, Fialho E (2015) Feijoada whole meal shows higher in vitro, antioxidant activity than combination of individual ingredients. LWT Food Sci Technol 63(2):1097–1101. https://doi.org/10.1016/j.lwt.2015.04.002

    Article  CAS  Google Scholar 

  56. Xing JL, Gang Wang GZN, Liu XM, Zhang QX, Zhao JX, Zhang H, Chen YQ, Chen W (2015) Cellular model to assess the antioxidant activity of lactobacilli. RSC Adv 5(47):37626–37634. https://doi.org/10.1039/C5RA02215K

    Article  CAS  Google Scholar 

  57. Xing JL, Wang G, Zhang QX, Liu XM, Yin B, Fang DS, Zhao JX, Zhang H, Chen YQ, Chen W (2015) Determining antioxidant activities of lactobacilli by cellular antioxidant assay in mammal cells. J Funct Foods 19:554–562. https://doi.org/10.1016/j.jff.2015.09.017

    Article  CAS  Google Scholar 

  58. Lin MY, Yen CL (1999) Antioxidative ability of lactic acid bacteria. J Agr Food Chem 47(4):1460–1466. https://doi.org/10.1021/jf981149l

    Article  CAS  Google Scholar 

  59. Wang X, Geng X, Egashira Y, Sanada H (2004) Purification and characterization of a feruloyl esterase from the intestinal bacterium Lactobacillus acidophilus. Appl Environ Microb 70(4):2367–2372. https://doi.org/10.1128/AEM.70.4.2367-2372.2004

    Article  CAS  Google Scholar 

  60. Berthoud VM, Beyer EC (2009) Oxidative stress, lens gap junctions, and cataracts. Antioxid Redox Sign 11(2):339–353. https://doi.org/10.1089/ars.2008.2119

    Article  CAS  Google Scholar 

  61. Brennan LA, Kantorow M (2009) Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Exp Eye Res 88(2):195–203. https://doi.org/10.1016/j.exer.2008.05.018

    Article  CAS  PubMed  Google Scholar 

  62. Wojcik M, Burzynska-Pedziwiatr I, Wozniak LA (2010) A review of natural and synthetic antioxidants important for health and longevity. Curr Med Chem 17(28):3262–3288. https://doi.org/10.2174/092986710792231950

    Article  CAS  PubMed  Google Scholar 

  63. Arasu MV, Kim DH, Kim PI, Jung MW, Ilavenil S, Jane M, Lee KD, Al-Dhabi NA, Choi KC (2014) In vitro antifungal, probiotic and antioxidant properties of novel Lactobacillus plantarum K46 isolated from fermented sesame leaf. Ann Microbiol 64(3):1333–1346. https://doi.org/10.1007/s13213-013-0777-8

    Article  CAS  Google Scholar 

  64. Li Y, Hugenholtz J, Abee T, Molenaar D (2003) Glutathione protects Lactococcus lactis against oxidative stress. Appl Environ Microb 69(10):5739–5745. https://doi.org/10.1128/AEM.69.10.5739-5745.2003

    Article  CAS  Google Scholar 

  65. Archibald FS, Fridovich I (1981) Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J Bacteriol 145(1):442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Horsburgh MJ, Wharton SJ, Karavolos M, Foster SJ (2002) Manganese: elemental defence for a life with oxygen. Trends in Microbiol 10(11):496–501. https://doi.org/10.1016/S0966-842X(02)02462-9

    Article  CAS  Google Scholar 

  67. Viljanen K (2005) Protein oxidation and protein-lipid interactions in different food models in the presence of berry phenolics. Helsingin Yliopisto 36:822–824

    Google Scholar 

  68. van Niel EW, Hofvendahl K, Hahn-Hägerdal B (2002) Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions. Appl Environ Microbiol 68(9):4350–4356. https://doi.org/10.1128/AEM.68.9.4350-4356.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pan DD, Mei XM (2010) Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydr Polym 80(3):908–914. https://doi.org/10.1016/j.carbpol.2010.01.005

    Article  CAS  Google Scholar 

  70. Xu R, Shen Q, Ding X, Gao W, Li P (2011) Chemical characterization and antioxidant activity of an exopolysaccharide fraction isolated from Bifidobacterium animalis RH. Eur Food Res Technol 232:231–240

    Article  CAS  Google Scholar 

  71. Malta LG, Tessaro EP, Eberlin M, Pastore GM, Liu RH (2013) Assessment of antioxidant and antiproliferative activities and the identification of phenolic compounds of exotic Brazilian fruits. Food Res Int 53(1):417–425. https://doi.org/10.1016/j.foodres.2013.04.024

    Article  CAS  Google Scholar 

  72. Wen L, Guo X, Rui HL, You L, Abbasi AM, Xiong F (2015) Phenolic contents and cellular antioxidant activity of Chinese hawthorn “Crataegus pinnatifida”. Food Chem 186:54–62. https://doi.org/10.1016/j.foodchem.2015.03.017

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (31401678) and the National Key R&D Program of China (2017YFD0400304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Li, C., He, Z. et al. Probiotic Properties and Cellular Antioxidant Activity of Lactobacillus plantarum MA2 Isolated from Tibetan Kefir Grains. Probiotics & Antimicro. Prot. 10, 523–533 (2018). https://doi.org/10.1007/s12602-017-9349-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9349-8

Keywords

Navigation