Skip to main content

Advertisement

Log in

Feasibility of Genome-Wide Screening for Biosafety Assessment of Probiotics: A Case Study of Lactobacillus helveticus MTCC 5463

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Recent years have witnessed an explosion in genome sequencing of probiotic strains for accurate identification and characterization. Regulatory bodies are emphasizing on the need for performing phase I safety studies for probiotics. The main hypothesis of this study was to explore the feasibility of using genome databases for safety screening of strains. In this study, we attempted to develop a framework for the safety assessment of a potential probiotic strain, Lactobacillus helveticus MTCC 5463 based on genome mining for genes associated with antibiotic resistance, production of harmful metabolites, and virulence. The sequencing of MTCC 5463 was performed using GS-FLX Titanium reagents. Genes coding for antibiotic resistance and virulence were identified using Antibiotic Resistance Genes Database and Virulence Factors Database. Results indicated that MTCC 5463 carried antibiotic resistance genes associated with beta-lactam and fluoroquinolone. There is no threat of transfer of these genes to host gut commensals because the genes are not plasmid encoded. The presence of genes for adhesion, biofilm, surface proteins, and stress-related proteins provides robustness to the strain. The presence of hemolysin gene in the genome revealed a theoretical risk of virulence. The results of in silico analysis complemented the in vitro studies and human clinical trials, confirming the safety of the probiotic strain. We propose that the safety assessment of probiotic strains administered live at high doses using a genome-wide screening could be an effective and time-saving tool for identifying prognostic biomarkers of biosafety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. European Food Safety Authority (2007) Scientific Opinion of the scientific committee on the introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA J 578:1–16

    Google Scholar 

  2. Salminen S, Nybom S, Meriluoto J, Carmen M, Vesterlund S, El-Nezami H (2010) Interaction of probiotics and pathogens: benefits to human health? Curr Opin Biotechnol 21:157–167. doi:10.1016/j.copbio.2010.03.016

    Article  CAS  Google Scholar 

  3. Brughton RA, Gruber WC, Haffar AA, Baker CJ (1983) Neonatal meningitis due to Lactobacillus. Pediatr Infect Dis J 2:382–384

    Article  Google Scholar 

  4. Harty DW, Oakey HJ, Patrikakis M, Hume HJ, Knox KW (1994) Pathogenic potential of lactobacilli. Int J Food Microbiol 24:179–189

    Article  CAS  Google Scholar 

  5. Rautio MH, Jousimies-Somer H, Kauma H, Pietarinen M, Saxelin S, Tynkkynen S, Koskela M (1999) Liver abscess due to a Lactobacillus rhamnosus strain indistinguishable from L. rhamnosus strain GG. Clin Infect Dis 28:1159–1160

    Article  CAS  Google Scholar 

  6. Adams M, Mitchell R (2002) Fermentation and pathogen control: a risk assessment approach. Int J Food Microbiol 79:75–78

    Article  CAS  Google Scholar 

  7. Borriello SP, Hammes WP, Holzapfel W (2003) Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 36:775–780

    Article  CAS  Google Scholar 

  8. Lee SY, Chang MT, Lee MH, Wu MS (2004) Lactobacillus peritonitis: a rare cause of peritonitis in peritoneal dialysis patients. Ren Fail 26:419–423

    Article  Google Scholar 

  9. Tleyjeh IM, Routh M, Qutub MO, Lischer G (2004) Lactobacillus gasseri causing Fournier’s gangrene. Scand J Infect Dis 36:501–503

    Article  Google Scholar 

  10. Kubiszewska I, Januszewska M, Rybka J, Gackowska L (2014) Lactic acid bacteria and health: are probiotics safe for human? Postepy Hig Med Dosw 17:1325–1334

    Article  Google Scholar 

  11. Sanders ME, Akkermans LMA, Haller D, Hammerman C, Heimbach J, Huys G, Levy D, Mack D, Phothirath P, Constable A, Solano-Aguilar G, Vaughan E (2010) Assessment of probiotic safety for human use. Gut Microbes 1:1–22

    Article  Google Scholar 

  12. International Life Sciences Institute Risk Science Institute Pathogen Risk Assessment Working Group (1996) A conceptual framework to assess the risks of human disease following exposure to pathogens. Risk Anal 16:841–848

    Article  Google Scholar 

  13. Didelot X, Bowden R, Wilson DJ, Peto TA, Crook DW (2012) Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 13:601–612. doi:10.1038/nrg3226

    Article  CAS  Google Scholar 

  14. Klaenhammer TR, Azcarate-Peril MA, Altermann E, Barrangou R (2007) Influence of the dairy environment on gene expression and substrate utilization in lactic acid bacteria. J Nutr 137:748–750

    Google Scholar 

  15. Callanan M, Kaleta P, O’Callaghan J, O’Sullivan O, Jordan K (2008) Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol 190:727–735. doi:10.1128/JB.01295-07

    Article  CAS  Google Scholar 

  16. Zhao W, Chen Y, Sun Z, Wang J, Zhou Z, Sun T, Wang L, Chen W, Zhang H (2011) Complete genome sequence of Lactobacillus helveticus H10. J Bacteriol 193:2666–2667. doi:10.1128/JB.00166-11

    Article  CAS  Google Scholar 

  17. Prajapati JB, Khedkar CD, Chitra J (2011) Whole genome shotgun sequencing of Indian origin strain of Lactobacillus helveticus strain MTCC 5463 with probiotic potential. J Bacteriol 193:4282–4283. doi:10.1128/JB.05449-11

    Article  CAS  Google Scholar 

  18. Tompkins TA, Barreau G, Broadbent JR (2012) Complete genome sequence of Lactobacillus helveticus R0052, a commercial probiotic strain. J Bacteriol 194:6349. doi:10.1128/JB.01638-12

    Article  CAS  Google Scholar 

  19. Brul S, Bassett JP, Cook P (2012) Omics’ technologies in quantitative microbial risk assessment. Trends Food Sci Technol 27:12–24

    Article  CAS  Google Scholar 

  20. Zhang ZY, Liu C, Zhu YZ, Wei YX, Tian F, Zhao GP, Guo XK (2012) Safety assessment of Lactobacillus plantarum JDM1 based on the complete genome. Int J Food Microbiol 153:166–170. doi:10.1016/j.ijfoodmicro.2011.11.003

    Article  CAS  Google Scholar 

  21. Khedekar CD, Dave JM, Sannabhadti SS (1990) Inhibition of growth of pathogenic microorganisms during production and storage of cultured milk. J Food Sci Technol 27:214–217

    Google Scholar 

  22. Patidar SK, Prajapati JB (1999) Effect of feeding Lactobacilli on serum antibody titre and faecal flora in chicks. Microbiogie Aliments Nutr 17:145–154

    Google Scholar 

  23. Ashar N, Prajapati JB (1999) Evaluation of hypolipemic effect of feeding Lactobacillus acidophilus V3 in human subjects. J Dairy Foods Home Sci 18:78–84

    Google Scholar 

  24. Prajapati JB, Senan S, Momin JK, Damor R (2012) A randomised double blind placebo controlled trial of potential probiotic strain Lactobacillus helveticus MTCC 5463: assessment of its safety, tolerance and influence on intestinal well-being and humoral immune response in healthy human volunteers. Int J Health Pharm Sci 3:1–12

    Google Scholar 

  25. Kodaikkal V, Prajapati JB, Ljungh A (2012) Evaluation of adhesion of Lactobacillus strains to HT 29 cells by a flow cytometric assay. Int J Appl Anim Sci 1:1–7

    Google Scholar 

  26. Senan S, Prajapati JB, Joshi CG (2015) Whole-genome based validation of the adaptive properties of Indian origin probiotic Lactobacillus helveticus strain MTCC 5463. J Sci Food Agric 95:321–328

    Article  CAS  Google Scholar 

  27. Senan S, Prajapati JB, Joshi CG (2014) Comparative genome-scale analysis of niche-based stress-responsive genes in Lactobacillus helveticus strains. Genome 57:185–192. doi:10.1139/gen-2014-0020

    Article  CAS  Google Scholar 

  28. Wei YX, Zhang ZY, Liu C (2012) Safety assessment of Bifidobacterium longum JDM301 based on complete genome sequences. World J Gastroenterol 18:479–488. doi:10.3748/wjg.v18.i5.479

    Article  CAS  Google Scholar 

  29. Bourdichon F, Casaregola S, Farrokh C (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154:87–97. doi:10.1016/j.ijfoodmicro.2011.12.030

    Article  CAS  Google Scholar 

  30. Bennedsen M, Stuer-Lauridsen B, Danielsen M, Johansen E (2011) Screening for antimicrobial resistance genes and virulence factors via genome sequencing. Appl Environ Microbiol 77:2785–2787. doi:10.1128/AEM.02493-10

    Article  CAS  Google Scholar 

  31. Hacker J, Kaper JB (1999) The concept of pathogenicity islands. In: Kaper JB, Hacker J (eds) Pathogenicity islands and other mobile virulence elements. ASM Press, Washington, DC, pp 1–11

    Chapter  Google Scholar 

  32. Sui SJ, Fedynak A, Hsiao WML (2009) The association of virulence factors with genomic islands. PLoS ONE 4:8094. doi:10.1371/journal.pone.0008094

    Article  Google Scholar 

  33. Macklaim JM, Gloor GB, Anukam KC, Cribby S, Reid G (2011) At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proc Natl Acad Sci USA 108:4688–4695. doi:10.1073/pnas.1000086107

    Article  CAS  Google Scholar 

  34. Siezen RJ, van Hylckama Vlieg LET (2011) Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Fact 10:S1–S3. doi:10.1186/1475-2859-10-S1-S3

    Article  Google Scholar 

  35. Parkhill J, Sebaihia M, Preston A, Murphy LD (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40

    Article  Google Scholar 

  36. Zarazaga M, Sáenz Y, Portillo A, Tenorio C, Ruiz-Larrea F, Del Campo R, Baquero F, Torres C (1999) In vitro activities of ketolide HMR3647, macrolides, and other antibiotics against Lactobacillus, Leuconostoc, and Pediococcus isolates. Antimicrob Agents Chemother 43:3039–3041

    CAS  Google Scholar 

  37. Temmerman R, Pot B, Huys G, Swings J (2003) Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int J Food Microbiol 81(1):1–10

  38. Hummel A, Holzapfel WH, Franz CM (2007) Characterization and transfer of antibiotic resistance genes from enterococci isolated from food. Syst Appl Microbiol 30:1–7

    Article  CAS  Google Scholar 

  39. Halttunen TMC, Collado H, El-Nezami H (2008) Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Lett Appl Microbiol 46:160–165

    Article  CAS  Google Scholar 

  40. Penaud S, Fernandez A, Boudebbouze S (2006) Induction of heavy-metal-transporting CPXtype ATPases during acid adaptation in Lactobacillus bulgaricus. Appl Environ Microbiol 72:7445–7454

    Article  CAS  Google Scholar 

  41. Azcarate-Peril MAE, Altermann LG, Goh YJ, Tallon R (2008) Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol 74:4610–4625. doi:10.1128/AEM.00054-08

    Article  CAS  Google Scholar 

  42. Kim DH, Jung EA, Sohng IS, Han JA, Kim TH, Han MJ (1998) Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res 21:17–23

    Article  CAS  Google Scholar 

  43. Chen X, Wu B, Wang PG (2003) Glucuronides in anti-cancer therapy. Curr Med Chem Anti-Cancer Agents 3:139–150

    Article  CAS  Google Scholar 

  44. Gloux K, Berteau O, Oumami HE, Béguet F, Leclerc M, Doré J (2011) A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. PNAS 108:4539–4546. doi:10.1073/pnas.1000066107

    Article  CAS  Google Scholar 

  45. Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764. doi:10.1128/MMBR.00017-08

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was funded by the Indian Council of Agricultural Research under the Niche Area of Excellence program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Senan.

Ethics declarations

Conflict of interest

Senan, Prajapati, and Joshi have no affiliations with or involvement in any organization or entity with any financial interest or nonfinancial interest in the subject matter or materials discussed in this manuscript.

Ethical Statement

The research has been conducted with integrity, and intellectual honesty, and human or animal subjects have not been a part of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senan, S., Prajapati, J.B. & Joshi, C.G. Feasibility of Genome-Wide Screening for Biosafety Assessment of Probiotics: A Case Study of Lactobacillus helveticus MTCC 5463. Probiotics & Antimicro. Prot. 7, 249–258 (2015). https://doi.org/10.1007/s12602-015-9199-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-015-9199-1

Keywords

Navigation