Skip to main content

Advertisement

Log in

Characterization of Putative Adhesion Genes in the Potentially Probiotic Strain Lactobacillus plantarum BFE 5092

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Two putative adhesion genes of the potentially probiotic strain Lactobacillus plantarum BFE 5092, i.e., a gene with similarity to an aggregation-promoting factor gene apf5092, and the mucin-binding protein gene mub5092, were investigated in this study. The gene encoding apf5092 encoded a protein bearing a predicted 26 amino acid signal peptide and a LysM domain putatively involved in binding to peptidoglycan. Moreover, the deduced protein also showed an amino acid sequence characteristic of an aggregation-promoting factor. The genes were tested for expression under different environmental conditions, and transcriptional studies on apf5092 showed that the expression could be influenced by low temperature and pH within 30 min. The aggregation behavior of the cells also changed at the low pH condition, but less noticeably at low temperature. To further investigate the role of apf5092 in aggregation, it was cloned and expressed in E. coli. The transformed strain showed higher co-aggregation ability with Gram-positive bacteria. Transcription studies on mub5092 revealed that it could be induced by mucin when added to the growth medium within 30 min. The data suggested that L. plantarum BFE 5092 can quickly adapt to changing environmental conditions and that enhanced aggregation may be important to survive low pH conditions, e.g., of the stomach or of fermented foods, and may thus be an important colonization factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adlerberth I, Ahrne S, Johansson ML, Molin G, Hanson LA, Wold AE (1996) A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl Environ Microbiol 62:2244–2251

    CAS  Google Scholar 

  2. Ahrné S, Lönnermark E, Wold AE, Aberg N, Hesselmar B, Saalman R, Strannegård IL, Molin G, Adlerberth I (2005) Lactobacilli in the intestinal microbiota of Swedish infants. Microbes Infect 7:1256–1262

    Article  Google Scholar 

  3. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  4. Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D, Corthesy Theulaz IE (2006) GroEL of Lactobacillus johnsonii La1(NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 74:425–434

    Article  CAS  Google Scholar 

  5. Björkroth J, Korkeala H (1996) Evaluation of Lactobacillus sake contamination in vacuum-packaged sliced cooked meat products by ribotyping. J Food Prot 59:398–401

    Google Scholar 

  6. Boekhorst J, Helmer Q, Kleerebezem M, Siezen RJ (2006) Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology 152:273–280

    Article  CAS  Google Scholar 

  7. Bringel F, Castioni A, Olukoya DK, Felis GE, Torriani S, Dellaglio F (2005) Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. Int J Syst Evol Microbiol 55:1629–1634

    Article  CAS  Google Scholar 

  8. Buist G, Steen A, Kok J, Kuipers OP (2008) LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 68:838–847

    Article  CAS  Google Scholar 

  9. Bujnakova D, Kmet V (2002) Aggregation of animal lactobacilli with O157 enterohemorrhagic Escherichia coli. J Vet Med B 49:152–154

    Article  CAS  Google Scholar 

  10. Castaldo C, Vastano V, Siciliano RA, Candela M, Vici M, Muscariello L, Marasco R, Sacco M (2009) Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. Microb Cell Fact 8:14

    Article  Google Scholar 

  11. Cho GS, Huch M, Hanak A, Holzapfel WH, Franz CMAP (2010) Genetic analysis of the plantaricin EFI locus of Lactobacillus plantarum PCS20 reveals an unusual plantaricin E gene sequence as a result of mutation. Int J Food Microbiol 141:S117–S124

    Article  CAS  Google Scholar 

  12. Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31:438–442

    Article  CAS  Google Scholar 

  13. Desroche N, Beltramo C, Guzzo J (2005) Determination of an internal control to apply reverse transcription quantitative PCR to study stress response in the lactic acid bacterium Oenococcus oeni. J Microbiol Methods 60:325–333

    Article  CAS  Google Scholar 

  14. Desvaux M, Dumas E, Chafsey I, Hébraud M (2006) Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett 256:1–15

    Article  CAS  Google Scholar 

  15. de Vries M, Vaughan EE, Kleerebezem M, de Vos WM (2005) Lactobacillus plantarum—survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16:1018–1028

    Article  Google Scholar 

  16. Goh YJ, Klaenhammer TR (2010) Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 76:5005–5012

    Article  CAS  Google Scholar 

  17. Gross G, van der Meulen J, Snel J, van der Meer R, Kleerebezem M, Niewold TA, Hulst MM, Smits MA (2008) Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium. FEMS Immun Med Microbiol 54:215–223

    Article  CAS  Google Scholar 

  18. Gross G, Snel J, Boekhorst J, Smits MA, Kleerebezem M (2010) Biodiversity of mannose-specific adhesion in Lactobacillus plantarum revisited: strain-specific domain composition of the mannose-adhesin. Beneficial Microbes 1:61–66

    Article  CAS  Google Scholar 

  19. Gupta V, Garg G (2009) Probiotics. Indian J Med Microbiol 27:202–209

    Article  CAS  Google Scholar 

  20. Jankovic I, Venture M, Meylan V, Rouvet M, Elli M, Zink R (2003) Contribution of aggregation-promoting factor (APF) to maintenance of cell shape in Lactobacillus gasseri 4B2. J Bacteriol 185:3288–3296

    Article  CAS  Google Scholar 

  21. Jonsson H, Strom E, Roos S (2001) Addition of mucin to the growth medium triggers mucus-binding activity in different strains of Lactobacillus reuteri in vitro. FEMS Microbiol Lett 16:19–22

    Article  Google Scholar 

  22. Kinoshita H, Wakahara N, Watanabe M, Kawasaki T, Matsuo H, Kawai Y, Kitazawa H, Ohnuma S, Miura K, Horii A, Saito T (2008) Cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Lactobacillus plantarum LA 318 recognizes human A and B blood group antigens. Res Microbiol 159:685–691

    Article  CAS  Google Scholar 

  23. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995

    Article  CAS  Google Scholar 

  24. Kostinek M, Specht I, Edward VA, Schillinger U, Hertel C, Holzapfel WH, Franz CMAP (2005) Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for preparation of Gari, a traditional African fermented food. Syst Appl Microbiol 28:527–540

    Article  CAS  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time PCR and the 2(-Delta DeltaC(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  26. Lorca G, Torino MI, Font d V, Ljungh AA (2002) Lactobacilli express cell surface proteins which mediate binding of immobilized collagen and fibronectin. FEMS Microbiol Lett 206:31–37

    Article  CAS  Google Scholar 

  27. Marcotte H, Ferrari S, Cesena L, Hammarström L, Morelli L, Pozzi G, Oggioni MR (2004) The aggregation-promoting factor of Lactobacillus crispatus M247 and its genetic locus. J Appl Microbiol 97:749–756

    Article  CAS  Google Scholar 

  28. Mathara JM, Schillinger U, Kutima PM, Mbugua SK, Holzapfel WH (2004) Isolation, identification and characterization of the dominant microorganisms of Kule naoto: the Maasai traditional fermented milk in Kenya. Int J Food Microbiol 94:269–278

    Article  CAS  Google Scholar 

  29. Mathara JM, Schillinger U, Guigas C, Franz C, Kutima PM, Mbugua SK, Shin HK, Holzapfel WH (2008) Functional characteristics of Lactobacillus ssp. from traditional Maasai fermented milk products in Kenya. Int J Food Microbiol 126:57–64

    Article  CAS  Google Scholar 

  30. Mobili P, s Serradell M, Traji SA, Avilés Puigvert FX, Abraham AG, De Antoni GL (2009) Heterogeneity of S-layer proteins from aggregating and non-aggregating Lactobacillus kefir strains. Antonie van Leeuwenhoek 95:363–372

    Article  CAS  Google Scholar 

  31. Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M (2005) Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187:6119–6127

    Article  CAS  Google Scholar 

  32. Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156

    Article  CAS  Google Scholar 

  33. Pretzer G, Snel J, Molenaar D, Wiersma A, Bron PA, Lambert J, de Vos WM, van der Meer R, Smits MA, Kleerebezem M (2005) Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187:6128–6136

    Article  CAS  Google Scholar 

  34. Proft T, Baker EN (2008) Pili in Gram-negative and Gram-positive bacteria—structure, assembly and their role in disease. Cell Mol Lifesci 66:612–635

    Google Scholar 

  35. Ramiah K, Van Reene A, Dicks LMT (2007) Expression of the mucus adhesion genes mub and mapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR. Int J Food Microbiol 116:405–409

    Article  CAS  Google Scholar 

  36. Romero DA, Klaenhammer TR (1992) IS946-mediated integration of heterologous DNA into the genome of Lactococcus lactis subsp. lactis. Appl Environ Microbiol 58:699–702

    CAS  Google Scholar 

  37. Sánchez B, Schmitter JM, Urdaci MC (2009) Identification of novel proteins secreted by Lactobacillus plantarum that bind to mucin and fibronectin. J Mol Microbiol Biotechnol 17:158–162

    Article  Google Scholar 

  38. Schachtsiek M, Hammes WP, Hertel C (2004) Characterization of Lactobacillus corynifomis DSM 20001T surface protein Cpf mediating coaggregation with and aggregation among pathogens. Appl Environ Microbiol 70:7078–7085

    Article  CAS  Google Scholar 

  39. Siciliano RA, Cacace G, Mazzeo MF, Morelli L, Elli M, Rossi M, Malorni A (2008) Proteomic investigation of the aggregation phenomenon in Lactobacillus crispatus. Biochim Biophys Acta 1784:335–342

    CAS  Google Scholar 

  40. Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, Rademaker JL, Starrenburg MJ, Kleerebezem M, Molenaar D, van Hylckama Vlieg JE (2010) Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ Microbiol 12:758–773

    Article  CAS  Google Scholar 

  41. Vélez MP, De Keersmaecker SCJ, Vanderleyden J (2007) Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol Lett 276:140–148

    Article  Google Scholar 

  42. Vizoso Pinto GM, Franz CMAP, Schillinger U, Holzapfel WH (2006) Lactobacillus ssp. with in vitro probiotic properties from human faeces and traditional fermented products. Int J Food Microbiol 109:205–214

    Article  CAS  Google Scholar 

  43. Vizoso Pinto GM, Schuster T, Riviba K, Watzl B, Holzapfel WH, Franz CMAP (2007) Adhesive and stimulatory properties of potentially probiotic Lactobacillus strains. J Food Prot 70:125–134

    Google Scholar 

  44. Voltan S, Castagliuolo I, Elli M, Longo S, Brun P, D’Incà R, Porzionato GC, Morelli L, Martines D (2007) Aggregating phenotype in Lactobacillus crispatus determines intestinal colonization and TLR2 and TLR4 modulation in murine colonic mucosa. Clin Vaccine Immunol 14:1138–1148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. A. P. Franz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, A., Cho, GS., Hanak, A. et al. Characterization of Putative Adhesion Genes in the Potentially Probiotic Strain Lactobacillus plantarum BFE 5092. Probiotics & Antimicro. Prot. 3, 204–213 (2011). https://doi.org/10.1007/s12602-011-9082-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-011-9082-7

Keywords

Navigation