Skip to main content

Advertisement

Log in

Soil suppressiveness by organic amendment to Fusarium disease in cucumber: effect on pathogen and host

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Soil suppressiveness to Fusarium wilt and crown rot disease, caused by Fusarium oxysporum f. sp. radicis-cucumerinum in cucumber, develops following the incorporation of wild rocket (Diplotaxis tenuifolia (L.) DC.) crop residues, manifested as reduction in disease incidence. We studied mechanisms that might be involved in disease suppression. Exposure of nonamended-nonsuppressive soil to volatile organic compounds generated from wild rocket decomposing in the soil induced soil suppressiveness to Fusarium disease in nonamended soil. Similarly, a crude aqueous soil extract from wild rocket-amended (suppressive) soil induced suppressiveness to Fusarium disease when cucumber seedlings were transplanted into nonsuppressive soil amended with this soil extract. Suppressive soils did not show any effect on F. oxysporum f. sp. radicis-cucumerinum macroconidial germination, mycelium growth or new chlamydospore production. Root colonization with Fusarium spp. was suppressed in inoculated plants after 6 days, but not after 3 days. No evidence for induced resistance was found when plants were first grown in suppressive soil followed by inoculation and transplanting in nonsuppressive soil, or when plants were inoculated with Botrytis cinerea. Findings suggest that the microorganisms perpetuate the mechanisms of suppressiveness following the introduction of organic amendments, and that this occurs in the root zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUDPC:

area under disease progress curve

FORC:

Fusarium oxysporum f. sp. radicis-cucumerinum

WR:

wild rocket

VOC:

volatile organic compounds

References

  • Benítez, M. S., & Gardener, B. B. M. (2009). Linking sequence to function in soil bacteria: sequence-directed isolation of novel bacteria contributing to soilborne plant disease suppression. Applied and Environmental Microbiology, 75, 915–924.

    Article  PubMed  Google Scholar 

  • Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends In Plant Science, 17, 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi, G., Antignani, V., Pane, C., & Scala, F. (2007). Suppression of soilborne fungal diseases with organic amendments. Journal of Plant Pathology, 89, 311–324.

    Google Scholar 

  • Bonanomi, G., Antignani, V., Capodilupo, M., & Scala, F. (2010). Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biology and Biochemistry, 42, 136–144.

    Article  CAS  Google Scholar 

  • Cha, J. Y., Han, S., Hong, H. J., Cho, H., Kim, D., Kwon, Y., Kwon, S. K., Crüsemann, M., Lee, Y. B., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M., & Kwak, Y. S. (2016). Microbial and biochemical basis of a Fusarium wilt-suppressive soil. The ISME Journal, 10, 119–129.

    Article  CAS  PubMed  Google Scholar 

  • Cook, R. J., & Baker, R. F. (1983). The nature and practice of biological control of plant pathogens. St. St. Paul: The American Phytopathological Society.

    Google Scholar 

  • Duijff, B. J., Recorbet, G., Bakker, P. A. H. M., Loper, J. A., & Lemanceau, P. (1999). Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology, 89, 1073–1079.

    Article  CAS  PubMed  Google Scholar 

  • Fourie, H., Ahuja, P., Lammers, J., & Daneel, M. (2016). Brassicacea-based management strategies as an alternative to combat nematode pests: a synopsis. Crop Protection, 80, 21–41.

    Article  Google Scholar 

  • Freeman, S., Sztejnberg, A., Shabi, E., & Katan, J. (1990). Long-term effect of soil solarization for the control of Rosellinia necatrix in apple. Crop Protection, 9, 312–316.

    Article  Google Scholar 

  • Gamliel, A., & Stapleton, J. J. (1993). Characterization of antifungal volatile compounds evolved from solarized soil amended with cabbage residues. Phytopathology, 83, 899–905.

    Article  CAS  Google Scholar 

  • Ghorbani, R., Wilcockson, S., Koocheki, A., & Leifert, C. (2008). Soil management for sustainable crop disease control: a review. Environmental Chemistry Letters, 6, 149–162.

    Article  CAS  Google Scholar 

  • Gilbert, R. G., & Griebel, G. E. (1969). The influence of volatile substances from alfalfa on Verticillium dahliae in soil. Phytopathology, 59, 1400–1403.

    CAS  Google Scholar 

  • Greenberger, A., Yogev, A., & Katan, J. (1987). Induced suppressiveness in solarized soils. Phytopathology, 77, 1663–1667.

    Article  Google Scholar 

  • Hornby, D. (1983). Suppressive soils. Annual Review of Phytopathology, 21, 65–85.

    Article  Google Scholar 

  • Kao, C. W., & Ko, W. H. (1983). Nature of suppression of Pythium splendens in a pasture soil in South Kohala, Hawaii. Phytopathology, 73, 1284–1289.

    Article  Google Scholar 

  • Kasuya, M., Olivier, A. R., Ota, Y., Tojo, M., Honjo, H., & Fukui, R. (2006). Induction of soil suppressiveness against Rhizoctonia solani by incorporation of dried plant residues into soil. Phytopathology, 96, 1372–1379.

    Article  PubMed  Google Scholar 

  • Katan, J. (1971). Symptomless carriers of the tomato Fusarium wilt pathogen. Phytopathology, 61, 1213–1217.

    Article  Google Scholar 

  • Klein, E., Katan, J., Austerweil, M., & Gamliel, A. (2007). Controlled laboratory system to study soil solarization and organic amendment effects on plant pathogens. Phytopathology, 97, 1476–1483.

    Article  PubMed  Google Scholar 

  • Klein, E., Katan, J., & Gamliel, A. (2011). Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant Disease, 95, 1116–1123.

    Article  Google Scholar 

  • Klein, E., Katan, J., & Gamliel, A. (2012). Soil suppressiveness to Meloidogyne javanica as induced by organic amendments and solarization in greenhouse crops. Crop Protection, 39, 26–32.

    Article  Google Scholar 

  • Klein, E., Ofek, M., Katan, J., Minz, D., & Gamliel, A. (2013). Soil suppressiveness to Fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. Phytopathology, 103, 23–33.

    Article  PubMed  Google Scholar 

  • Knudsen, I. M. B., Debosz, K., Hockenhull, J., Jensen, D. F., & Elmholt, S. (1999). Suppressiveness of organically and conventionally managed soils towards brown foot rot of barley. Applied Soil Ecology, 12, 61–72.

    Article  Google Scholar 

  • Larkin, R. P., Hopkins, D. L., & Martin, F. N. (1993). Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conducive to Fusarium wilt of watermelon. Phytopathology, 83, 1097–1105.

    Article  Google Scholar 

  • Linderman, R. G., & Gilbert, R. G. (1975). Influence of volatiles of plant origin on soil-borne plant pathogens. In G. W. Bruehl (Ed.), Biology and control of soil-borne plant pathogens (pp. 90–99). St. Paul: The American Phytopathological Society.

    Google Scholar 

  • Mazurier, S., Corberand, T., Lemanceau, P., & Raaijmakers, J. M. (2009). Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. The ISME Journal, 3, 977–991.

    Article  CAS  PubMed  Google Scholar 

  • Mazzola, M. (2002). Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek, 81, 557–564.

    Article  CAS  PubMed  Google Scholar 

  • Mazzola, M. (2007). Manipulation of rhizosphere bacterial communities to induce suppressive soils. Journal of Nematology, 39, 213–220.

    PubMed  PubMed Central  Google Scholar 

  • Mazzola, M., Brown, J., Izzo, A. D., & Cohen, M. F. (2007). Mechanism of action and efficacy of seed meal-induced pathogen suppression differ in a Brassicaceae species and time-dependent manner. Phytopathology, 97, 454–460.

    Article  PubMed  Google Scholar 

  • Mendes, R., Kruijt, M., Bruijn, I. de, Dekkers, E., Voort, M. van der, Schneider, J. H. M., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A. H. M., & Raaijmakers, J. M. (2013). Metagenomics of the rhizosphere microbiome to identify disease suppressive bacteria. In: Book of Abstracts 10th International Congress of Plant Pathology, Beijing, China, 25-30 August 2013. Acta Phytopathologica Sinica 43(suppl.) (2013). ISSN 0412-091 p. 509.

  • Neubauer, C., Heitmann, B., & Müller, C. (2014). Biofumigation potential of Brassicaceae cultivars to Verticillium dahliae. European Journal of Plant Pathology, 140, 341–352.

    Article  Google Scholar 

  • Oyarzun, P. J., Gerlagh, M., & Zadoks, J. C. (1998). Factors associated with soil receptivity to some fungal root rot pathogens of peas. Applied Soil Ecology, 10, 151–169.

    Article  Google Scholar 

  • Persson, L., Larsson-Wikström, M., & Gerhardson, B. (1999). Assessment of soil suppressiveness to Aphanomyces root rot of pea. Plant Disease, 83, 1108–1112.

    Article  Google Scholar 

  • Pharand, B., Carisse, O., & Benhamou, N. (2002). Cytological aspects of compost-mediated induced resistance against Fusarium crown and root rot in tomato. Phytopathology, 92, 424–438.

    Article  PubMed  Google Scholar 

  • Postma, J., Geraats, B. P. J., Pastoor, R., & van Elsas, J. D. (2005). Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology, 95, 808–818.

    Article  CAS  PubMed  Google Scholar 

  • Postma, J., Schilder, M. T., & Stevens, L. H. (2014). The potential of organic amendments to enhance soil suppressiveness against Rhizoctonia solani disease in differnt soils and crops. Acta Horticulturae, 1044, 127–132.

    Article  Google Scholar 

  • Raaijmakers, J. M., & Weller, D. M. (1998). Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Molecular Plant-Microbe Interactions, 11, 144–152.

    Article  CAS  Google Scholar 

  • Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321, 341–361.

    Article  CAS  Google Scholar 

  • Scher, F. M., & Baker, R. (1980). Mechanism of biological control in a Fusarium-suppressive soil. Phytopathology, 70, 412–417.

    Article  Google Scholar 

  • Sneh, B., Pozniak, D., & Salomon, D. (1987). Soil suppressiveness to Fusarium wilt of melon, induced by repeated cropping of resistant varieties of melons. Journal of Phytopathology, 120, 347–354.

    Article  Google Scholar 

  • Spadaro, D., & Lodovica Gullino, M. (2004). Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Protection, 24, 601–613.

    Article  Google Scholar 

  • Stapleton, J. J., & De Vay, J. E. (1983). Response of phytoparasitic and free-living nematodes to soil solarization and 1,3-Dichloropropene in California. Phytopathology, 73, 1429–1436.

    Article  Google Scholar 

  • Stone, A. G., Vallad, G. E., Cooperband, L. R., Rotenberg, D., Darby, H. M., James, R. V., Stevenson, W. R., & Goodman, R. M. (2003). Effect of organic amendments on soilborne and foliar diseases in field-grown snap bean and cucumber. Plant Disease, 87, 1037–1104.

    Article  Google Scholar 

  • Sztejnberg, A., Freeman, S., Chet, I., & Katan, J. (1987). Control of Rosellinia necatrix in soil and in apple orchard by solarization and Trichoderma harzianum. Plant Disease, 71, 365–369.

    Article  Google Scholar 

  • Thuerig, B., Fliebbach, A., Berger, N., Fuchs, J. G., Kraus, N., Mahlberg, N., Nietlispach, B., & Tamm, L. (2009). Re-establishment of suppressiveness to soil- and air-borne diseases by reinoculation of soil microbial communities. Soil Biology & Biochemistry, 41, 2153–2161.

    Article  CAS  Google Scholar 

  • Triky-Dotan, S., Ofek, M., Austerweil, M., Steiner, B., Minz, D., Katan, J., & Gamliel, A. (2010). Microbial aspects of accelerated degradation of metam sodium in soil. Phytopathology, 100, 367–375.

    Article  CAS  PubMed  Google Scholar 

  • van Agtmaal, M., van Os, G. J., Hol, W. H. G., Hundscheid, M. P. J., Runia, W. T., Hordijk, C. A., & de Boer, W. (2015). Legacy effects of anaerobic soil disinfestations on soil bacterial community composition and production of pathogen-suppressing volatiles. Frontiers in Microbiology, 6, 701. doi:10.3389/fmicb.2015.00701.

    PubMed  PubMed Central  Google Scholar 

  • Vestberg, M., Kukkonen, S., Parikka, P., Yu, D., & Romantschuk, M. (2014). Reproducibility of suppression of Pythium wilt of cucumber by compost. Agricultural and Food Science, 23, 236–245.

    Google Scholar 

  • Westphal, A., & Xing, L. (2011). Soil suppressiveness against the disease complex of the soybean cyst nematode and sudden death syndrome of soybean. Phytopathology, 101, 878–886.

    Article  PubMed  Google Scholar 

  • Yogev, A., Raviv, M., Hadar, Y., Cohen, R., Wolf, S., Gil, L., & Katan, J. (2010). Induced resistance as a putative component of compost suppressiveness. Biological Control, 54, 46–51.

    Article  Google Scholar 

  • Yulianti, T., Sivasithamparam, K., & Turner, D. (2007). Saprophytic and pathogenic behaviour of R. solani AG2-1 (ZG-5) in a soil amended with Diplotaxis tenuifolia or Brassica nigra manures and incubated at different temperatures and soil water content. Plant and Soil, 294, 277–289.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Laboratory for Pest Management Research and S. Erez for their technical assistance; Prof. I. Elad and D. Rav-David for their guidance and support throughout the work with foliar pathogens; M. Alpert and YAAF Corporation )Mehola, Israel) for providing fresh herbs; H. Voet for advice in the statistical analysis, and Y. Gotlieb and the staff of the Hebrew University Experimental Farm for their cooperation. This research was partially supported by grants from the Chief Scientist of the Ministry of Agricultural and Rural Development. Contribution No 96/15 series from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Gamliel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, E., Katan, J. & Gamliel, A. Soil suppressiveness by organic amendment to Fusarium disease in cucumber: effect on pathogen and host. Phytoparasitica 44, 239–249 (2016). https://doi.org/10.1007/s12600-016-0512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-016-0512-7

Keywords

Navigation