Skip to main content
Log in

Genetic diversity and pathogenicity of Fusarium oxysporum isolated from wilted rocket plants in Italy

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Thirty-six isolates of Fusarium oxysporum originated from Eruca vesicaria and Diplotaxis tenuifolia together with eight reference strains belonging to the formae speciales raphani, matthioli and conglutinans, typical on the Brassicaceae family, were tested for pathogenicity on two species of rocket plants (E. vesicaria L., syn. E. sativa, cv. ‘Rucola coltivata’; and D. tenuifolia cv. ‘Winter’) cultivated in the glasshouse. The results showed that different isolates were slightly, moderately or highly virulent. The strains were examined for differences in the nucleotide sequence of the ribosomal DNA (rDNA) intergenic spacer (IGS) region, about 2.5 kb long. The phylogenetic (neighbor-joining) analysis performed on the isolates enabled identification of four different groups, named I, II, III and IV. Thirty-one isolates out of 36 clustered in group I and were genetically similar to F. oxysporum f.sp. raphani. By considering the pathogenicity of the strains included in Group I, a partial host specialization could be observed: the average disease index of the isolates from D. tenuifolia was higher on wild rocket, whereas the average disease index of the isolates from E. vesicaria was higher on cultivated rocket. Moreover, isolates from cultivated rocket showed, on average, a higher degree of aggressiveness than the isolates from wild rocket. Concerning Group I, the sequence analysis confirmed the homogeneity of the population, with only five parsimony-informative SNPs and five haplotypes. Twenty-six out of 31 isolates belonged to haplotype 1. Groups II and III were genetically similar to strains of F. oxysporum f.sp. matthioli. Three other strains, not pathogenic or with a medium level of virulence, clustered together in Group 4, but their sequence was distant from that of other formae speciales. The pathogenicity and IGS analysis confirmed the presence of virulence variation and genetic diversity among the F. oxysporum isolates studied. To our knowledge, this is the first report of differentiation of formae speciales of F. oxysporum on rocket plants by IGS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alves-Santos, F. M., Benito, E. P., Eslava, A. P., & Diazminguez, J. M. (1999). Genetic diversity of Fusarium oxysporum strains from common bean fields in Spain. Applied and Environmental Microbiology, 65, 3335–3340.

    PubMed  CAS  Google Scholar 

  • Amatulli, M. T., Spadaro, D., Gullino, M. L., & Garibaldi, A. (2010). Molecular identification of Fusarium spp. associated with bakanae disease of rice and assessment of their virulence. Plant Pathology, 59, 839–844.

    Article  CAS  Google Scholar 

  • Appel, D. J., & Gordon, T. R. (1995). Intra-specific variation within populations of Fusarium oxysporum based on RFLP analysis of the intergenic spacer region of the rDNA. Experimental Mycology, 19, 120–128.

    Article  PubMed  CAS  Google Scholar 

  • Appel, D. J., & Gordon, T. R. (1996). Relationships among pathogenic and non-pathogenic isolates of Fusarium oxysporum based on the partial sequences of the intergenic spacer region of the ribosomal DNA. Molecular Plant-Microbe Interaction, 9, 125–138.

    Article  CAS  Google Scholar 

  • Catti, A., Pasquali, M., Ghiringhelli, D., Garibaldi, A., & Gullino, M. L. (2007). Analysis of vegetative compatibility groups of Fusarium oxysporum from Eruca vesicaria and Diplotaxis tenuifolia. Journal of Phytopathology, 155, 61–64.

    Article  Google Scholar 

  • Chatterjee, C., & Rai, J. N. (1974). Fusarium wilt of Eruca vesicaria—observation on comparative pathogenicity of some strains of Fusarium oxysporum. Indian Phytopathology, 28, 309–311.

    Google Scholar 

  • Dissanayake, M. L. M. C., Kashima, R., Tanaka, S., & Ito, S. I. (2009). Genetic diversity and pathogenicity of Fusarium oxysporum isolated from wilted Welsh onion in Japan. Journal of General Plant Pathology, 75, 125–130.

    Article  Google Scholar 

  • Edel, V., Steinberg, C., Avelange, I., Laguerre, G., & Alabouvette, C. (1995). Comparison of three molecular methods for the characterisation of Fusarium oxysporum strains. Phytopathology, 85, 579–585.

    Article  CAS  Google Scholar 

  • Engelbrecht, C. J. B., Harrington, T. C., Alfenas, A. C., & Suarez, C. (2007). Genetic variation in populations of the cacao wilt pathogen, Ceratocystis cacaofunesta. Plant Pathology, 56, 923–933.

    Article  CAS  Google Scholar 

  • Enya, J., Togawa, M., Takeuchi, T., Yoshida, S., Tsushima, S., Arie, T., et al. (2008). Biological and phylogenetic characterization of Fusarium oxysporum complex, which causes yellows on Brassica spp. and proposal of F. oxysporum f. sp. rapae, a novel forma specialis pathogenic on B. rapa in Japan. Phytopathology, 98, 475–483.

    Article  PubMed  CAS  Google Scholar 

  • Fourie, G., Steenkamp, E. T., Gordon, T. R., & Viljoen, A. (2009). Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups. Applied and Environmental Microbiology, 75, 4770–4781.

    Article  PubMed  CAS  Google Scholar 

  • Fravel, D., Olivain, C., & Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol. New Phytologist, 157, 4770–4781.

    Article  Google Scholar 

  • Fuchs, J. G., Moënne-Loccoz, Y., & Défago, G. (1997). Non-pathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Disease, 81, 492–496.

    Article  Google Scholar 

  • Fujinaga, M., Ogiso, H., Shinohara, H., Tsushima, S., Nishimura, N., Togawa, M., et al. (2005). Phylogenetic relationships between the lettuce root rot pathogen Fusarium oxysporum f. sp. lactucae races 1, 2 and 3 based on the sequence of the intergenic spacer region of its ribosomal DNA. Journal of General Plant Pathology, 71, 402–407.

    Article  CAS  Google Scholar 

  • Garibaldi, A., Gilardi, G., & Gullino, M. L. (2002). First report of Fusarium oxysporum on lettuce in Europe. Plant Disease, 86, 1052.

    Article  Google Scholar 

  • Garibaldi, A., Gilardi, G., & Gullino, M. L. (2003). First report of Fusarium oxysporum on Eruca vesicaria and Diplotaxis sp. in Europe. Plant Disease, 87, 201.

    Article  Google Scholar 

  • Garibaldi, A., Gilardi, G., & Gullino, M. L. (2004). First report of Fusarium oxysporum causing vascular wilt of lamb’s lettuce (Valerianella olitoria) in Italy. Plant Disease, 88, 83.

    Article  Google Scholar 

  • Garibaldi, A., Gilardi, G., & Gullino, M. L. (2006). Evidence for an expanded host range of Fusarium oxysporum f. sp. raphani. Phytoparasitica, 34, 115–121.

    Article  Google Scholar 

  • Gilardi, G., Sendhilvel, V., Garibaldi, A., & Gullino, M. L. (2008). Lamb’s lettuce (Valerianella olitoria): new host of Fusarium oxysporum f. sp. conglutinans. Journal of Plant Diseases and Protection, 115, 229–233.

    Google Scholar 

  • Gupta, A. K. (1988). Fusarium wilt of taramira—a new record for Rajasthan. Indian Journal of Mycology and Plant Pathology, 172, 239–240.

    Google Scholar 

  • Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology, 166, 557–580.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, T. C., Steimel, J., Workneh, F., & Yang, X. B. (2003). Characterization of two races of Phialophora gregata in North-Central United States. Phytopathology, 93, 901–912.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, T. C., Thorpe, D. J., & Alfenas, A. C. (2011). Genetic variation in aggressiveness to native and exotic hosts among Brazilian populations of Ceratocystis fimbriata. Phytopathology, 101, 555–566.

    Article  PubMed  Google Scholar 

  • Katan, T. (1999). Current status of vegetability groups in Fusarium oxysporum. Phytoparasitica, 27, 51–64.

    Article  Google Scholar 

  • Kawabe, M., Katsube, K., Yoshida, T., Arie, T., & Tsuchiya, K. (2007). Genetic diversity of Fusarium oxysporum f. sp. spinaciae in Japan based on phylogenetic analyses of rDNA-IGS and MAT1 sequences. Journal of General Plant Pathology, 73, 353–359.

    Article  CAS  Google Scholar 

  • Kawabe, M., Kobayashi, Y., Okada, G., Yamaguchi, I., Teraoka, T., & Arie, T. (2005). Three evolutionary lineages of tomato wilt pathogen, Fusarium oxysporum f. sp. lycopersici, based on sequences of IGS, MAT1 and pg1, are each composed of isolates of a single mating type and a single or closely related vegetative compatibility group. Journal of General Plant Pathology, 71, 263–272.

    Article  CAS  Google Scholar 

  • Kimura, M. A. (1980). Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Komada, H. (1975). Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review of Plant Protection Research, 8, 114–125.

    Google Scholar 

  • Larkin, R. P., Hopkins, D. L., & Martin, F. N. (1996). Suppression of Fusarium wilt of watermelon by non-pathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology, 86, 812–819.

    Article  Google Scholar 

  • Lievens, B., Rep, M., & Thomma, B. P. H. J. (2008). Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. Pest Management Science, 64, 781–788.

    Article  PubMed  CAS  Google Scholar 

  • Ma, L. J., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M. J., Pietro, A. D., et al. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464, 367–373.

    Article  PubMed  CAS  Google Scholar 

  • Mbofung, G. Y., Hong, S. G., & Pryor, B. M. (2007). Phylogeny of Fusarium oxysporum f. sp. lactucae inferred from mitochondrial small subunit, elongation factor 1-α and nuclear ribosomal intergenic spacer sequence data. Phytopathology, 97, 87–98.

    Article  PubMed  CAS  Google Scholar 

  • Minerdi, D., Moretti, M., Gilardi, G., Barberio, C., Gullino, M. L., & Garibaldi, A. (2008). Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environmental Microbiology, 10, 1725–1741.

    Article  PubMed  CAS  Google Scholar 

  • Namiki, F., Shiomi, T., Kayamura, T., & Tsuge, T. (1994). Characterization of the formae speciales of Fusarium oxysporum causing wilts of cucurbits by DNA fingerprinting with nuclear repetitive DNA sequences. Applied and Environmental Microbiology, 60, 2684–2691.

    PubMed  CAS  Google Scholar 

  • O’Donnell, K., Gueidan, C., Sink, S., Johnston, P. R., Crous, P. W., Glenn, A., et al. (2009). A two-locus DNA sequence database for typing plant and human pathogens within Fusarium oxysporum species complex. Fungal Genetics and Biology, 46, 936–948.

    Article  PubMed  Google Scholar 

  • Olivain, C., Humbert, C., Nahalkova, J., Fatehi, J., L’Haridon, F. L., & Alabouvette, C. (2006). Colonization of tomato root by pathogenic and non-pathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Applied and Environmental Microbiology, 72, 1523–1531.

    Article  PubMed  CAS  Google Scholar 

  • Padulosi, S., & Pignone, D. [Eds.] (1997). Rocket: A Mediterranean crop for the world. Report of a Workshop, 1996, Legnano, Italy. Rome, Italy: International Plant Genetic Resources Institute.

  • Pariaud, B., Ravigne, V., Halkett, F., Goyeau, H., Carlier, J., & Lannou, C. (2009). Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathology, 58, 409–424.

    Article  Google Scholar 

  • Pasquali, M., Saravanakumar, D., Gullino, M. L., & Garibaldi, A. (2008). Sequence-specific amplified polymorphism (SSAP) technique to analyse Fusarium oxysporum f. sp. lactucae VCG 0300 isolate from lettuce. Journal of Plant Pathology, 90, 527–535.

    CAS  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Santamaria, P., Elia, A., & Serio, F. (2002). Effect of solution nitrogen concentration on yield, leaf element content and water and nitrogen use efficiency of three hydroponically grown rocket salad genotypes. Journal of Plant Nutrition, 25, 245–258.

    Article  CAS  Google Scholar 

  • Spadaro, D., & Gullino, M. L. (2005). Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Protection, 24, 601–613.

    Article  Google Scholar 

  • Srinivasan, K., Gilardi, G., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2010). Molecular characterization through IGS sequencing of formae speciales of Fusarium oxysporum pathogenic on lamb’s lettuce. Phytopathologia Mediterranea, 49, 309–320.

    CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software, version 40. Molecular Biology and Evolution, 24, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S., et al. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology, 31, 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Thiel, T., Kota, R., Grosse, I., Stein, N., & Graner, A. (2004). SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Research, 32, e1–e5.

    Article  Google Scholar 

  • Thompson, J. D., Higgins, D. C., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • van der Does, H. C., Lievens, L., Claes, L., Houterman, P. M., Cornelissen, B. J. C., & Rep, M. (2008). The presence of a virulence locus discriminates Fusarium oxysporum isolates causing tomato wilt from other isolates. Environmental Microbiology, 10, 1475–1485.

    Article  PubMed  Google Scholar 

  • Woo, S. L., Zoina, A., Del Sorbo, G., Lorito, M., Nanni, B., Scala, F., et al. (1996). Characterisation of Fusarium oxysporum f. sp. phaseoli by pathogenic races, VCG, RFLP and RAPD. Phytopathology, 86, 966–973.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the projects “Advanced Diagnostic Tools, Disease Detection Networking and Technical Extension (ADVANET) for non-conventional disease control strategies in vegetable production in Piedmont” and “Safe Food Control Development of innovative systems and technologies for the production, storage, processing and valorization of Piedmontese fruit and vegetables” funded by the Piedmont Region. We are especially grateful to Dr. Robert Milne, who recently passed away, for his last accurate revision of manuscripts of our research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Spadaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, K., Spadaro, D., Poli, A. et al. Genetic diversity and pathogenicity of Fusarium oxysporum isolated from wilted rocket plants in Italy. Phytoparasitica 40, 157–170 (2012). https://doi.org/10.1007/s12600-011-0207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-011-0207-z

Keywords

Navigation