Skip to main content
Log in

Biochemical and molecular studies of early blight disease in tomato

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Tomato early blight occurs worldwide and it is prevalent wherever tomatoes are grown. Alternaria solani Sorauer, the causal agent, has been recognized as a serious foliar pathogen of tomato and there are very few cultivars which possess resistance against early blight. Alternaric acid is the major toxin of A. solani. In this study, alternaric acid and fungal culture filtrate were used as an elicitor in NDT-96 (tolerant) and GP-5 (susceptible) tomato varieties in order to study and compare their abilities to induce defense-related enzymes, viz., catalase, peroxidase, β-1,3 glucanase, phenylalanine-ammonia-lyase (PAL), chitinase and polyphenol-oxidase (PPO) along with total phenols, and total soluble proteins. NDT-96 showed a rapid induction of all these pathogenesis-related enzymes except catalase along with total phenols as compared to GP-5 with both the treatments. Differential expression of total soluble proteins revealed higher protein content in NDT-96 as compared with GP-5. A 49.48 kDa protein was observed to be absent in GP-5. In addition, 25 microsatellite markers (SSR) were screened for polymorphisms among the above mentioned two tomato varieties. Of these, SSR 286 revealed a significant polymorphic band of 108 bp in NDT-96.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barber, J. M. (1980). Catalase and peroxidase in primary leaves during development and senescence. Journal of Plant Breeding, 97, 135–144.

    Google Scholar 

  • Barksdale, T. H. (1971). Field evaluation for tomato early blight resistance. Plant Disease Reporter, 55, 807–809.

    Google Scholar 

  • Bashan, Y., Okon, Y., & Henis, Y. (1985). Peroxidase, polyphenol oxidase and phenols in relation to resistance against Pseudomonas syringae pv tomato in tomato. Canadian Journal of Botany, 65, 366–372.

    Article  Google Scholar 

  • Bell, J. N., Dixon, R. A., Bailey, J. A., Rowell, P. M., & Lamb, C. J. (1984). Differential induction of chalcone synthase mRNA activity at the onset of phytoalexin accumulation in compatible and incompatible plantpathogen interactions. Proceedings of the National Academy of Sciences of the United States of America, 81, 3384–3388.

    Article  PubMed  CAS  Google Scholar 

  • Bhatia, I. S., Uppal, D. S., & Bajaj, K. L. (1972). Study of phenolic contents of resistant and susceptible varieties of tomato (Lycopersicum esculentum) in relation to early blight disease. Indian Phytopathology, 25, 231–235.

    CAS  Google Scholar 

  • Brian, P. W., Elson, G. W., Hemming, H. G., & Wright, J. M. (1952). The phytotoxic properties of alternaric acid in relation to the etiology of plant diseases caused by Alternaria solani (Ell. & Mart.) Jones & Grout. Applied Biology, 39, 308–321.

    Article  CAS  Google Scholar 

  • Carrasco, A., Boudet, A. M., & Marigo, G. (1978). Enhanced resistance of tomato plants to Fusarium by controlled stimulation of their natural phenolic production. Physiology and Plant Pathology, 12, 225–232.

    Article  CAS  Google Scholar 

  • Chen, Z., Silva, H., & Klessig, D. F. (1993). Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262, 1883–1886.

    Article  PubMed  CAS  Google Scholar 

  • Constabel, C. P., Yip, L., Patton, J. J., & Christopher, M. E. (2000). Polyphenol oxidase from hybrid poplar, cloning and expression in response to wounding and herbivory. Plant Physiology, 124, 285–295.

    Article  PubMed  CAS  Google Scholar 

  • Daugrois, J. H., Lafitte, C., Barthe, J. P., & Touze, A. (1991). Induction of β-1,3-glucanase and chitinase activity in compatible and incompatible interactions between Colletotrichum lindemuthianum and bean cultivars. Journal of Phytopathology, 130, 225–234.

    Article  Google Scholar 

  • Deborah, S. D., Palaniswami, A., Vidhyasekaran, P., & Velazhahan, R. (2001). Time course study of the induction of defense enzymes, phenolics and lignin in rice in response to infection by pathogen and non-pathogen. Journal of Plant Diseases and Protection, 108, 204–216.

    CAS  Google Scholar 

  • Devi, M. C., & Reddy, M. N. (2002). Phenolic acid metabolism of groundnut (Arachis hypogaea L.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regulators, 37, 151–156.

    Article  Google Scholar 

  • Dickerson, D. P., Pascholati, S. F., Hagerman, A. E., Butler, L. G., & Nicholson, R. L. (1984). Phenylalanine ammonia- lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiological Plant Pathology, 25, 111–123.

    Article  CAS  Google Scholar 

  • Dixon, R. A., Harrison, M. J., & Lamb, C. J. (1994). Early events in the activation of plant defense responses. Annual Review of Phytopathology, 32, 479–501.

    Article  CAS  Google Scholar 

  • Doyle, J. J., & Doyle, J. L. (1990). A rapid total DNA preparation procedure for fresh plant tissue. Focus, 12, 13–15.

    Google Scholar 

  • Du, H., & Klessig, D. L. (1997). Systemic acquired resistance in catalase deficient tobacco plant. Plant Physiology, 10, 922–925.

    CAS  Google Scholar 

  • Fernandez, A., Solorzano, E., Peteira, B., & Fernandez, E. (1996). Peroxidase induction in tomato leaves with different degrees of susceptibility to Alternaria solani. Revista de Protección Vegetal, 11, 79–83.

    Google Scholar 

  • Flott, B. E., Moersehbacher, B. M., & Reisener, H. (1989). Peroxidase isozyme patterns of resistant and susceptible wheat leaves following stem rust infection. The New Phytologist, 111, 413–421.

    Article  CAS  Google Scholar 

  • Frindlender, M., Inbar, J., & Chet, I. (1993). Biological control of soil borne plant pathogens by a β-1,3-glucanase producing Pseudomonas cepacia. Soil Biology and Biochemistry, 25, 1211–1221.

    Article  Google Scholar 

  • Gaube, C., Dubourg, C., Pawelec, A., Chamont, S., Blancard, D., & Briard, M. (2004). Brûlures foliaires parasitaires de la carotte. Alternaria dauci sous surveillance. PHM Revue Horticulture, 454, 15–18.

    Google Scholar 

  • Hammond-Kosack, K. E., & Jones, J. D. G. (1996). Resistance gene-dependent plant defense responses. The Plant Cell, 8, 1773–1791.

    Article  PubMed  CAS  Google Scholar 

  • He, C., Poysa, V., & Yu, K. (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theoretical and Applied Genetics, 106, 363–373.

    PubMed  CAS  Google Scholar 

  • Herriot, A. B., Haynes, F. L., Jr., & Shoemaker, P. B. (1986). The heritability of resistance to early blight in diploid potatoes (Solanum tuberosum subsp. phureja and stenotonum). American Potato Journal, 63, 229–232.

    Article  Google Scholar 

  • Jaskani, M. J., Kwon, S. W., Kim, D. H., & Abbas, H. (2006). Seed treatments and orientation affects germination and seedling emergence in tetraploid watermelon. Pakistan Journal of Botany, 38, 89–98.

    Google Scholar 

  • Johanson, A., & Thurston, H. D. (1990). The effect of cultivar maturity on the resistance of potato to early blight caused by Alternaria solani. American Potato Journal, 67, 615–623.

    Article  Google Scholar 

  • Jung, W. J., Jin, Y. L., Kim, K. Y., Park, R. D., & Kim, T. H. (2005). Changes in pathogenesis-related proteins in pepper plants with regard to biological control of Phytophthora blight with Paenibacillus illinoisensis. Biocontrol, 50, 165–178.

    Article  CAS  Google Scholar 

  • Keinath, A., DuBose, V. B., & Rathwell, P. J. (1996). Efficacy and economics of three fungicide application schedules for early blight control and yield of fresh-market tomato. Plant Disease, 80, 1277–1282.

    Article  CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, C. B., Joosten, M. H. A. J., & Tuzun, S. (1996). Differential induction of pathogenesis related proteins in tomato by Alternaria solani and the association of a basic chitinase isozyme with resistance. Physiological and Molecular Plant Pathology, 43, 361–377.

    Article  Google Scholar 

  • Lawrence, C. B., Singh, N. P., Qiu, J., Gardner, R. G., & Tuzun, S. (2000). Constitutive hydrolytic enzymes are associated with polygenic resistance of tomato to Alternaria solani and may function as an elicitor release mechanism. Physiological and Molecular Plant Pathology, 57, 211–220.

    Article  CAS  Google Scholar 

  • Linthorst, H. J. M. (1991). Pathogenesis-related proteins of plants. Critical Reviews in Plant Sciences, 10, 123–150.

    Article  CAS  Google Scholar 

  • Locke, S. B. (1948). A method for measuring resistance to defoliation diseases in tomato and other Lycopersicon species. Phytopathology, 38, 937–942.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Madden, L., Pennypacker, S. P., & MacNab, A. A. (1978). FAST, a forecast system for Alternaria solani on tomato. Phytopathology, 68, 1354–1358.

    Article  Google Scholar 

  • Maher, E. A., Bate, N. J., Ni, W., Elkind, Y., Dixon, R. A., & Lamb, C. J. (1994). Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proceedings of the National Academy of Sciences of the United States of America, 91, 7802–7806.

    Article  PubMed  CAS  Google Scholar 

  • Mauch-Mani, B., & Slusarenko, A. J. (1996). Production of salicylic acid precursors is a major function of phenylalanine ammonia lyase in the resistance of Arabidopsis to Perenospora parasitica. The Plant Cell, 8, 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, A. M., Harel, E., & Shaul, R. B. (1965). Assay of catechol oxidase—a critical comparison of methods. Phytochemistry, 5, 783–789.

    Article  Google Scholar 

  • Nash, A. F., & Gardner, R. G. (1988). Tomato early blight resistance in a breeding line derived from Lycopersicon hirsutum PI 126445. Plant Disease, 72, 206–209.

    Article  Google Scholar 

  • Neuhoff, V., Arold, N., Taube, D., & Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 9, 255–262.

    Article  PubMed  CAS  Google Scholar 

  • Pan, S. Q., Ye, X. S., & Kuç, J. (1991). Association of β-1,3 glucanase activity and isoform pattern with systemic resistance to blue mold in tobacco induced by stem injection with Peronospora tabacina or leaf inoculation with tobacco mosaic virus. Physiological and Molecular Plant Pathology, 39, 25–39.

    Article  CAS  Google Scholar 

  • Pound, G. S., & Stahmann, M. A. (1951). The production of toxic material by Alternaria solani and its relation to the early blight disease of tomato. Phytopathology, 41, 1104–1114.

    CAS  Google Scholar 

  • Powell, W., Machray, G. C., & Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1, 215–222.

    Google Scholar 

  • Powell, W., Orozco-Castillo, C., Chalmers, K. J., Provan, J., & Waugh, R. (1995). Polymerase chain reaction-based assays for the characterisation of plant genetic resources. Electrophoresis, 16, 1726–1730.

    Article  PubMed  CAS  Google Scholar 

  • Radhajeyalakshmi, R., Velazhahan, R., Samiyappan, R., & Doraiswamy, S. (2009). Systemic induction of pathogenesis related proteins (PRs) in Alternaria solani elicitor sensitized tomato cells as resistance response. Scientific Research and Essay, 4, 685–689.

    Google Scholar 

  • Rafalski, J. A., Vogel, J. M., Morgante, M., Powell, W., Andre, C., & Tingey, S. V. (1996). Generating new DNA markers in plants. In B. Birren & E. Lai (Eds.), Non-mammalian genomic analysis: A practical guide (pp. 75–134). New York, NY: Academic.

    Google Scholar 

  • Rajput, S. G., Wable, K. J., Sharma, K. M., Kubde, P. D., & Mulay, S. A. (2006). Reproducibility testing of RAPD and SSR markers in tomato. African Journal of Biotechnology, 5, 108–112.

    CAS  Google Scholar 

  • Rani, P., & Yasur, J. (2009). Physiological changes in groundnut plants induced by pathogenic infection of Cercosporidium personatum Deighton. Allelopathy Journal, 23, 369–378.

    Google Scholar 

  • Reimers, P. J., Guo, A., & Leach, J. E. (1992). Increased activity of cationic peroxidase associated with an incompatible interaction between Xanthomonas oryzae pv oryzae and rice (Oryza sativa). Plant Physiology, 99, 1044–1050.

    Article  PubMed  CAS  Google Scholar 

  • Reissig, J. L., Strominger, J. L., & Leloir, L. F. (1959). A modified colorimetric method for the estimation of N-acetyl sugars. The Journal of Biological Chemistry, 217, 959–962.

    Google Scholar 

  • Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic acquired resistance. The Plant Cell, 8, 1809–1819.

    Article  PubMed  CAS  Google Scholar 

  • Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Hori, G. T., et al. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Sherf, A. F., & MacNab, A. A. (1986). Vegetable diseases and their control. New York, NY: Wiley.

    Google Scholar 

  • Shtienberg, D., Blachinsky, D., Kremer, Y., Ben-Hador, G., & Dinoor, A. (1995). Integration of genotype and age-related resistance to reduce fungicide use in management of Alternaria diseases of cotton and potato. Phytopathology, 85, 995–1002.

    Article  Google Scholar 

  • Siriphanich, J., & Kader, A. A. (1985). Effects of CO2 on cinnamic acid 4-hydroxylase in relation to phenolic metabolism in lettuce tissue. Journal of the American Society for Horticultural Science, 110, 333–335.

    CAS  Google Scholar 

  • Solorzano, E., Fernandez, A., Peteira, B., & Fernandez, E. (1996). Polyphenol oxidases and phenylalanine ammonium lyases induction in tomato leaves infected with Alternaria solani. Revista de Protección Vegetal, 11, 153–157.

    Google Scholar 

  • Stewart, R. J., Sawyer, B. J. B., Bucheli, C. S., & Robinson, S. P. (2001). Polyphenol oxidase is induced by chilling and wounding in pineapple. Australian Journal of Plant Physiology, 28, 181–191.

    CAS  Google Scholar 

  • Stout, M. J., Fidantsef, A. L., Duffey, S. S., & Bostock, R. M. (1999). Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 54, 115–130.

    Article  CAS  Google Scholar 

  • Sumner, J. B., & Gjessing, E. C. (1943). A method for the determination of peroxidase activity. Archives of Biochemistry and Biophysics, 2, 291–293.

    CAS  Google Scholar 

  • Thipyapong, P., Hunt, M. D., & Steffens, J. C. (1995). Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry, 40, 673–676.

    Article  CAS  Google Scholar 

  • Thipyapong, P., & Steffens, J. C. (1997). Tomato polyphenol oxidase: differential response of the polyphenol oxidase F promoter to injuries and wound signals. Plant Physiology, 115, 409–418.

    PubMed  CAS  Google Scholar 

  • Vanacker, H., Carver, T. L. W., & Foyer, C. H. (1998). Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiology, 117, 1103–1114.

    Article  PubMed  CAS  Google Scholar 

  • Van Loon, L. C. (1997). Induced resistance in plants and the role of pathogenesis related proteins. European Journal of Plant Pathology, 103, 753–765.

    Article  Google Scholar 

  • Velazhahan, R., & Vidhyasekaran, P. (1994). Role of phenolic compounds, peroxidase and polyphenol oxidase in resistance of groundnut to rust. Acta Phytopathologica et Entomologica Hungarica, 29, 23–29.

    CAS  Google Scholar 

  • Wang, Y., Tang, X., Cheng, Z., Mueller, L., Giovannoni, J., & Tanksley, S. D. (2006). Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics, 172, 2529–2540.

    Article  PubMed  CAS  Google Scholar 

  • Ward, E., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., et al. (1991). Coordinate gene activity in response to agents that induce systemic acquired resistance. The Plant Cell, 3, 1085–1094.

    Article  PubMed  CAS  Google Scholar 

  • Yao, K., De Luca, V., & Brisson, N. (1995). Creation of a metabolic sink for tryptophan alters the phenyl propanoid pathway and the susceptibility of potato to Phytophthora infestans. The Plant Cell, 7, 1787–1799.

    Article  PubMed  CAS  Google Scholar 

  • Zieslin, N., & Ben-Zaken, R. (1993). Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiology and Biochemistry, 31, 333–339.

    CAS  Google Scholar 

Download references

Acknowledgments

We are very thankful to Dr. Subhash Patel, Anand Agricultural University, India, for providing the Alternaria solani isolate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchita J. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S.J., Subramanian, R.B. & Jha, Y.S. Biochemical and molecular studies of early blight disease in tomato. Phytoparasitica 39, 269–283 (2011). https://doi.org/10.1007/s12600-011-0156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-011-0156-6

Keywords

Navigation