Skip to main content
Log in

High resistance to pyrethroid insecticides in the Polish pollen beetle (Meligethes aeneus F.): the role of oxidative metabolism

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Pollen beetle (Meligethes aeneus F.) (PB) causes very serious problems in oilseed rape (Brassica napus var. oleifera L.) cultivations in Poland and other European countries. Pyrethroid insecticides are the most frequently used type for controlling PB in Poland. This chemical group has been used in Poland since the beginning of the 1980’s and its strong selection pressure on PB resulted in some level of resistance of this pest to many active substances. The aim of this investigation was to analyze, with the use of synergists, the main mechanisms responsible for resistance of PB to pyrethroids. The results indicate the main resistance factor in Polish PB populations to be monooxygenase enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.

    CAS  Google Scholar 

  • Brattsten, L. B. (1979). Biochemical defense mechanisms in herbivores against plant allelochemicals. In G. A. Rosenthal & D. H. Janzen (Eds.), Herbivores: Their interaction with secondary plant metabolites (pp. 200–270). New York, NY: Academic Press.

    Google Scholar 

  • Casida, J. E. (1970). Mixed-function oxidase involvement in the biochemistry of insecticide synergists. Journal of Agricultural and Food Chemistry, 18, 753–772.

    Article  CAS  PubMed  Google Scholar 

  • Clark, A. G. (1986). Insecticide metabolism by multiple glutathione S-transferases in two strains of the house fly, Musca domestica (L.). Pesticide Biochemistry and Physiology, 25, 169–175.

    Article  CAS  Google Scholar 

  • Dowd, P. F., Smith, C. M., & Sparks, T. C. (1983). Detoxification of plant toxins by insects. Insect Biochemistry, 13, 453–468.

    Article  CAS  Google Scholar 

  • Farnham, A. W. (1973). Genetics of resistance of pyrethroid-selected houseflies, Musca domestica (L.). Pesticide Science, 4, 513–520.

    Article  CAS  Google Scholar 

  • Field, L. M., & Devonshire, A. L. (1992). Esterase gene conferring insecticide resistance in aphids. In C. A. Mullen, & J. G. Scott (Eds.), Molecular mechanisms of insecticide resistance (pp. 209–217). ACS symposium series 505. Washington, DC: American Chemical Society

  • Finney, D. J. (1952). Probit analysis. A statistical treatment of the sigmoid response curve, vol. 2 (pp. 236–245). London, UK: Cambridge University Press.

    Google Scholar 

  • Fournier, D., & Mutero, A. (1994). Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comparative Biochemistry and Physiology Part C, 108, 19–31.

    Google Scholar 

  • Gunning, R. V., Moores, G. D., & Devonshire, A. L. (1998). Inhibition of resistance related esterases by piperonyl butoxide in Helicoverpa armigera and Aphis gossypii. In D. G. Jones (Ed.), Piperonyl butoxide, the insecticide synergist (pp. 215–226). London, UK: Academic Press.

    Google Scholar 

  • Heimbach, U., Müller, A., & Thieme, T. (2006). First steps to analyse pyrethroid resistance of different oilseed rape pests in Germany: an extended abstract. IOBC wprs Bulletin, 29(7), 131–134.

    Google Scholar 

  • Ishaaya, I. (1993). Insect detoxifying enzymes: their importance in pesticide synergism and resistance. Archives of Insect Biochemistry and Physiology, 22, 263–276.

    Article  CAS  PubMed  Google Scholar 

  • Ishaaya, I. (Ed.). (2001). Biochemical sites of insecticide action and resistance. Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Lund, A. E. (1984). Pyrethroid modification of sodium channel: current concepts. Pesticide Biochemistry and Physiology, 22, 161–168.

    Article  CAS  Google Scholar 

  • Malinowski, H. (1987). Spektrum odporności krzyżowej owadów selekcjonowanych fotostabilnymi pyretroidami na przykładzie muchy domowej (Musca domestica L.). [The range of cross-resistance at insects selected with photostabile pyrethroids on the example of Musca domestica (L.).]. Roczniki Nauk Rolniczych [Annales of Agricultural Sciences] E, 17(1), 119–132.

    Google Scholar 

  • Malinowski, H. (1988). Badania nad Odpornością Owadów na Fotostabilne Pyretroidy na Przykładzie Muchy Domowej (Musca domestica L.). [Research on insects’ resistance to photostable pyrethroids on the example of Musca domestica (L.)]. Warsaw, Poland: Instytut Przemysłu Organicznego [Institute of Industrial Organic Chemistry].

    Google Scholar 

  • Malinowski, H. (2000). Fizjologiczne, biochemiczne i behawioralne mechanizmy odporności owadów na insektycydy chemiczne. [Physiological, biochemical and behavioural insect resistance mechanisms to chemical insecticides]. Prace Instytutu Badawczego Leśnictwa [Forest Research Institute], A, 1(892), 7–43.

    Google Scholar 

  • Malinowski, H. (2003). Odporność owadów na insektycydy. [Insects resistance to insecticides]. Warsaw, Poland: Wydawnictwo Wieś Jutra Publishers.

    Google Scholar 

  • Moores, G. D., Philippou, D., Borzatta, V., Trincia, P., Jewess, P., Gunning, R., et al. (2009). An analogue of piperonyl butoxide facilitates the characterisation of metabolic resistance. Pest Management Science, 65, 150–154.

    Article  CAS  PubMed  Google Scholar 

  • Mrówczyński, M. (2003). Studium nad doskonaleniem ochrony rzepaku ozimego przed szkodnikami. [Research on the improvement of rapeseed protection against pests]. Poznan, Poland: Rozprawy Naukowe Instytutu Ochrony Roślin [Scientific Papers of the Institute of Plant Protection].

    Google Scholar 

  • Naumann, K. (1990). Action of pyrethroids against arthropod pests. In G. Haug & H. Hoffmann (Eds.), Chemistry of plant protection 4. Synthetic pyrethroid insecticides: structures and properties (pp. 87–115). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Obrępalska-Stęplowska, A., Węgorek, P., Nowaczyk, K., & Zamojska, J. (2006). The study on pyrethroid resistance in pollen beetle Meligethes aeneus. Acta Biochemica Polonica, 53, 198–199.

    Google Scholar 

  • Richardson, D. M. (2008). Summary of findings from a participant country pollen beetle questionnaire. EPPO Bulletin, 38, 68–72.

    Article  Google Scholar 

  • Różański, L. (1992). Przemiany pestycydów w organizmach żywych i w środowisku. [Pesticides transformations in live organisms and in the environment]. Warsaw, Poland: National Agricultural and Forest Publishers.

    Google Scholar 

  • Sawicki, R. M., Farnham, A. W., Denholm, I., & Church, V. J. (1985). Potentiation of super-kdr resistance to deltamethrin and other pyrethroids by an intensifier (factor 161) on autosome 2 in the housefly (Musca domestica L). Pesticide Science, 4, 501–512.

    Article  Google Scholar 

  • Schoknecht, U., & Otto, D. (1989). Enzymes involved in the metabolism of organophosphorus, carbamate and pyrethroid insecticides. In G. Haug & H. Hoffmann (Eds.), Chemistry of plant protection 2. Degradation of pesticides, desiccation, and defoliation, ACh-receptors as targets (pp. 118–149). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Silcox, C. A., Ghidiu, G. M., & Forgash, A. J. (1985). Laboratory and field evaluation of piperonyl butoxide as pyrethroid synergist against Colorado potato beetle. Journal of Economic Entomology, 78, 1399–1405.

    CAS  Google Scholar 

  • Tozzi, A. (1998). A brief history of the development of piperonyl butoxide as an insecticide synergist. In D. G. Jones (Ed.), Piperonyl butoxide: The insecticide synergist (pp. 1–5). San Diego, CA, USA: Academic Press.

    Google Scholar 

  • Węgorek, P. (2009). Badania nad odpornością chrząszczy słodyszka rzepakowego (Meligethes aeneus F.) na insektycydy. [Research on pollen beetle (Meligethes aeneus F.) resistance to insecticides.]. Rozprawy Naukowe IOR – PIB [Scientific Papers of the Institute of Plant Protection – National Research Institute], 20. Poznan, Poland.

  • Węgorek, P., Mrówczyński, M., & Zamojska, J. (2009). Resistance of pollen beetle (Meligethes aeneus F.) to selected active substances of insecticides in Poland. Journal of Plant Protection Research, 49, 119–127.

    Article  Google Scholar 

  • Węgorek, P., Obrępalska-Stęplowska, A., Nowaczyk, K., & Zamojska, J. (2007). The level of resistance of Polish populations of pollen beetle (Meligethes aeneus F.) against pyrethroids; mechanisms of resistance in light of molecular research. Progress in Plant Protection Research, 47, 383–388.

    Google Scholar 

  • Wilkinson, C. F. (1983). Role of mixed-function oxidases in insecticide resistance. In G. P. Georghiou & T. Saito (Eds.), Pest resistance to pesticides (pp. 175–206). New York, NY: Plenum Press.

    Google Scholar 

  • Yasutomi, K. (1983). Role of detoxication esterases in insecticide resistance. In G. P. Georghiou & T. Saito (Eds.), Pest resistance to pesticides (pp. 249–263). New York, NY: Plenum Press.

    Google Scholar 

  • Young, S. J., Gunning, R. V., & Moores, G. D. (2005). The effect of PBO on pyrethroid-resistance-associated esterases in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Management Science, 61, 397–401.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Węgorek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Węgorek, P., Zamojska, J. & Mrówczyński, M. High resistance to pyrethroid insecticides in the Polish pollen beetle (Meligethes aeneus F.): the role of oxidative metabolism. Phytoparasitica 39, 43–49 (2011). https://doi.org/10.1007/s12600-010-0138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-010-0138-0

Keywords

Navigation