Skip to main content
Log in

Ultralight and compressive SiC nanowires aerogel for high-temperature thermal insulation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Aerogels with excellent properties combination of ultralow density and great thermal insulation are drawing attention to applications in harsh conditions. Common aerogels, however, are usually constructed with nanoparticles with a weakness in physical combination. The silicon carbide nanowire (SiCNW) is a kind of one-dimensional (1D) nanowire possessing the promising properties of flexibility, great thermal insulation, and stability at high temperatures. An aerogel constructed by the SiCNW will produce a great material with a promising material, the amazing SiCNW aerogel. Here, a novel SiCNW aerogel was fabricated consisting of quantities of β-SiCNW of 15–40 nm in diameter and tens to hundreds of micrometers in length. This SiCNW aerogel possessed an ultralow density of 5.82 mg·cm–3, high-temperature resistance, and great thermal insulation with its thermal conductivities of 0.063 W·m–1·K–1 at 100 °C and 0.243 W·m–1·K–1 at 900 °C in He. Furthermore, the thermal insulation applicability of this aerogel was simulated. This study provides a promising way for designing and fabricating other multifunctional nanowire aerogels for high-temperature thermal insulation.

Graphical Abstract

摘要

由于具备超低密度和优异的隔热性能,气凝胶有望应用于极端条件,因而受到了广泛的关注。常规气凝胶通常由纳米颗粒物理结合而成,强度较低。碳化硅纳米线 (SiCNW) 是一种一维纳米线,具有柔韧性、隔热性优良和高温稳定性好等特点。因此,采用SiCNW构筑的气凝胶将是一种惊人且理想SiCNW气凝胶材料。本文中制备了一种新型SiCNW气凝胶,该气凝胶由大量直径15‒40 nm、长度在数十至数百微米的β-SiCNW构筑而成。该SiCNW气凝胶具有5.82 mg·cm‒3的超低密度、耐高温且隔热性能优良等特点,其在氦气气氛下100和900 ℃测得的导热系数分别为0.063和0.243 W·m‒1·K‒1。此外,本文还模拟了该气凝胶的隔热性能适用性,为其他应用于高温隔热的多功能纳米线气凝胶的设计和制造提供了一种潜在的探索思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lange C, Witte L, Rosta R, Sohl F, Heffels A, Knapmeyer M. A seismic-network mission proposal as an example for modular robotic lunar exploration missions. Acta Astronaut. 2017;134:121. https://doi.org/10.1016/j.actaastro.2017.02.004.

    Article  Google Scholar 

  2. Kamiński M. Homogenization with uncertainty in Poisson ratio for polymers with rubber particles. Compos B Eng. 2015;69:267. https://doi.org/10.1016/j.compositesb.2014.07.033.

    Article  CAS  Google Scholar 

  3. Mesforoush H, Pakmanesh MR, Esfandiary H, Asghari S, Baniasadi E. Experimental and numerical analyses of thermal performance of a thin-film multi-layer insulation for satellite application. Cryogenics. 2019;102:77. https://doi.org/10.1016/j.cryogenics.2019.07.005.

    Article  CAS  Google Scholar 

  4. Miyakita T, Hatakenaka R, Sugita H, Saitoh M, Hirai T. Evaluation of thermal insulation performance of a new multi-layer insulation with non-interlayer-contact Spacer. In: 45th International Conference on Environmental Systems. Washington; 2015.1. https://ttu-ir.tdl.org/handle/2346/64487

  5. Du B, Zhang DY, Qian JJ, Cai M, He C, Zhou P, Shui AZ. Multifunctional carbon nanofiber-SiC nanowire aerogel films with great microwave absorbing performance. Adv Compos Hybrid Mater. 2021;4(4):1281. https://doi.org/10.1007/s42114-021-00286-1.

    Article  CAS  Google Scholar 

  6. Bonnet M, Schmid L, Baiker A, Diederich F. A new mesoporous hybrid material: porphyrin-doped aerogel as a catalyst for the epoxidation of olefins. Adv Func Mater. 2010;12(1):39. https://doi.org/10.1002/1616-3028(20020101)12:1%3C39::AID-ADFM39%3E3.0.CO;2-F.

    Article  Google Scholar 

  7. Liu RL, Li W, Liu SQ, Pan LX, Wu DQ, Zhao DY. An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. Adv Func Mater. 2015;25(4):526. https://doi.org/10.1002/adfm.201403280.

    Article  CAS  Google Scholar 

  8. Xie YH, Zhou B, Du A. Slow-sound propagation in aerogel-inspired hybrid structure with backbone and dangling branch. Adv Compos Hybrid Mater. 2021;4(2):248. https://doi.org/10.1007/s42114-021-00234-z.

    Article  CAS  Google Scholar 

  9. Zhou YL, Qu YP, Yin LT, Chen WN, Huang YA, Fan RH. Coassembly of elastomeric microfibers and silver nanowires for fabricating ultra-stretchable microtextiles with weakly and tunable negative permittivity. Compos Sci Technol. 2022;223:109415. https://doi.org/10.1016/j.compscitech.2022.109415.

    Article  CAS  Google Scholar 

  10. Cai HF, Jiang YG, Jian F, Chen Q, Zhang SG, Li LJ, Feng JZ. Nanostructure evolution of silica aerogels under rapid heating from 600 °C to 1300 °C via in-situ TEM observation-ScienceDirect. Ceram Int. 2020;46(8):12489. https://doi.org/10.1016/j.ceramint.2020.02.011.

    Article  CAS  Google Scholar 

  11. Li SZ, Song YZ, Song Y, Shi JL, Liu L, Wei XH, Guo QG. Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch. Carbon. 2007;45(10):2092. https://doi.org/10.1016/j.carbon.2007.05.014.

    Article  CAS  Google Scholar 

  12. Nenarokomov AV, Dombrovsky LA, Krainova IR, Alifanov OM, Budnik SA. Identification of radiative heat transfer parameters in multilayer thermal insulation of spacecraft. Int J Numer Meth Heat Fluid Flow. 2017;27(3):598. https://doi.org/10.1108/HFF-03-2016-0136.

    Article  Google Scholar 

  13. Yue CW, Feng J, Feng JZ, Jiang YG. Ultralow-density and high-strength graphene aerogels composites for thermal insulation. Mater Lett. 2017;188:169. https://doi.org/10.1016/j.matlet.2016.11.028.

    Article  CAS  Google Scholar 

  14. Zani A, Dellasega D, Russo V, Passoni M. Ultra-low density carbon foams produced by pulsed laser deposition. Carbon. 2013;56:358. https://doi.org/10.1016/j.carbon.2013.01.029.

    Article  CAS  Google Scholar 

  15. Zhang H, Zhou Y, Li CG, Chen SL, Liu L, Liu SW, Yao HM, Hou HQ. Porous nitrogen doped carbon foam with excellent resilience for self-supported oxygen reduction catalyst. Carbon. 2015;95:388. https://doi.org/10.1016/j.carbon.2015.08.025.

    Article  CAS  Google Scholar 

  16. Farhan S, Wang RM, Jiang H, UI-Haq N. Preparation and characterization of carbon foam derived from pitch and phenolic resin using a soft templating method. J Anal Appl Pyrol. 2014;110:229. https://doi.org/10.1016/j.jaap.2014.09.003.

    Article  CAS  Google Scholar 

  17. Si Y, Wang XQ, Dou LY, Yu JY, Ding B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci Adv. 2018;4(4):eaas8925. https://doi.org/10.1126/sciadv.aas8925.

    Article  CAS  Google Scholar 

  18. Wang F, Dou LY, Dai JW, Li YY, Huang LQ, Si Y, Yu JY, Ding B. In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew Chem. 2020;132(21):8362. https://doi.org/10.1002/ange.202001679.

    Article  Google Scholar 

  19. Wang XQ, Dou LY, Li ZL, Yang L, Yu JY, Ding B. Flexible hierarchical ZrO2 nanoparticle-embedded SiO2 nanofibrous membrane as a versatile tool for efficient removal of phosphate. ACS Appl Mater Interfaces. 2016;8(50):34668. https://doi.org/10.1021/acsami.6b11294.

    Article  CAS  Google Scholar 

  20. Wang DC, Lei Y, Jiao W, Liu YF, Mu CH, Jian X. A review of helical carbon materials structure, synthesis and applications. Rare Met. 2021;40(1):3. https://doi.org/10.1007/s12598-020-01622-y.

    Article  CAS  Google Scholar 

  21. Su L, Wang HJ, Niu M, Fan XY, Ma MB, Shi ZQ, Guo SW. Ultralight, recoverable, and high-temperature-resistant sic nanowire aerogel. ACS Nano. 2018. https://doi.org/10.1021/acsnano.7b08577.

    Article  Google Scholar 

  22. Mei H, Han DY, Xiao SS, Ji TM, Tang J, Cheng LF. Improvement of the electromagnetic shielding properties of C/SiC composites by electrophoretic deposition of carbon nanotube on carbon fibers. Carbon. 2016;109:149. https://doi.org/10.1016/j.carbon.2016.07.070.

    Article  CAS  Google Scholar 

  23. Pei BB, Zhu YZ, Yuan M, Huang ZR, Li YS. Effect of in situ grown SiC nanowires on microstructure and mechanical properties of C/SiC composites. Ceram Int. 2014;40(4):5191. https://doi.org/10.1016/j.ceramint.2013.10.077.

    Article  CAS  Google Scholar 

  24. Xiao SS, Mei H, Han DY, Dassios KG, Cheng LF. Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon. 2017;122:718. https://doi.org/10.1016/j.carbon.2017.07.023.

    Article  CAS  Google Scholar 

  25. Dai W, Yu JH, Wang Y, Song YZ, Alam FE, Nishimura K, Lin CT, Jiang N. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J Mater Chem A. 2015;3(9):4884. https://doi.org/10.1039/C4TA06417H.

    Article  CAS  Google Scholar 

  26. Yu SJ, Chen ZF, Wang Y, Luo RY, Li BB, Chen Z, Pan Y. Preparation and thermal insulation analysis of SiCw-SiC foam with hollow skeletons via carbon foam template CVI method. Mater Charact. 2017;134:296. https://doi.org/10.1016/j.matchar.2017.11.014.

    Article  CAS  Google Scholar 

  27. Zhang JX, Chen ZF, Ai SF, Ye XL, Guo SQ, Xue SB. Arisen Ni–Si compounds in the fabricated SiC-NWs/melamine-based carbon foam composites with ultralow thermal conductivty. Mater Res Express. 2019;6(6):065608. https://doi.org/10.1088/2053-1591/ab0c5c.

    Article  CAS  Google Scholar 

  28. Song YP, Schmitt AL, Jin S. Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett. 2007;7(4):965. https://doi.org/10.1021/nl0630687.

    Article  CAS  Google Scholar 

  29. Sun HY, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater. 2013;25(18):2554. https://doi.org/10.1002/adma.201204576.

    Article  CAS  Google Scholar 

  30. Zhang L, Zhuang H, Jia CL, Jiang X. Role of catalyst in controlling the growth and morphology of one-dimensional SiC nanostructures. CrystEngComm. 2015;17(37):7070. https://doi.org/10.1039/C5CE00865D.

    Article  CAS  Google Scholar 

  31. Ge YC, Liu YQ, Wu S, Wu H, Mao PL, Yi MZ. Characterization of SiC nanowires prepared on C/C composite without catalyst by CVD. Transactions of Nonferrous Metals Society of China. 2015;25(10):3258. https://doi.org/10.1016/S1003-6326(15)63962-0.

    Article  CAS  Google Scholar 

  32. Klamchuen A, Suzuki M, Nagashima K, Yoshida H, Kanai M, Zhuge F, He Y, Meng G, Kai S, Takeda S, Kawai T, Yanagida T. Rational concept for designing vapor–liquid–solid growth of single crystalline metal oxide nanowires. Nano Lett. 2015;15(10):6406. https://doi.org/10.1021/acs.nanolett.5b01604.

    Article  CAS  Google Scholar 

  33. Lu CY, Cheng LF, Zhang LT, Xu YD, Zhao CN. Equilibrium prediction of the role of key species in the chemical vapor deposition of silicon carbide. J Inorg Mater. 2008;23(6):1189. https://doi.org/10.3724/SP.J.1077.2008.01189.

    Article  CAS  Google Scholar 

  34. Ganz M, Dorval N, Lefebvre M, Péalat M, Loumagne F, Langlais F. In situ optical analysis of the gas phase during the deposition of silicon carbide from methyltrichlorosilane. J Electrochem Soc. 1996;143(5):1654. https://doi.org/10.1149/1.1836694.

    Article  CAS  Google Scholar 

  35. Zhou WY, Yan W, Li N, Li YB, Schafföner S, Dai YJ, Zhang Z, Yuan L. Fabrication, characterization and thermal-insulation modeling of foamed mullite-SiC ceramics. J Alloy Compd. 2020;829:154523. https://doi.org/10.1016/j.jallcom.2020.154523.

    Article  CAS  Google Scholar 

  36. Lysenko V, Roussel PH, Remaki B, Delhomme D, Dittmar A, Barbier D, Strikha V, Martelet C. Study of nano-porous silicon with low thermal conductivity as thermal insulating material. J Porous Mater. 2000;7(1):177. https://doi.org/10.1023/A:1009626518619.

    Article  CAS  Google Scholar 

  37. Yu SJ, Chen ZF, Wang Y, Luo RY, Pan Y. A study of thermal insulation properties and microstructure of ultra-light 3D-carbon foam via direct carbonization of polymer foam. J Porous Mater. 2018;25(2):527. https://doi.org/10.1007/s10934-017-0465-3.

    Article  CAS  Google Scholar 

  38. Cheng YH, Zhou SB, Hu P, Zhao GD, Li YX, Zhang XH, Han WB. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction. Sci Rep. 2017;7(1):1. https://doi.org/10.1038/s41598-017-01601-x.

    Article  CAS  Google Scholar 

  39. Zhang RB, An ZM, Zhao Y, Zhang L, Zhou P. Nanofibers reinforced silica aerogel composites having flexibility and ultra-low thermal conductivity. Int J Appl Ceram Technol. 2020;17(3):1531. https://doi.org/10.1111/ijac.13457.

    Article  CAS  Google Scholar 

  40. Wang BL, Li GY, Xu L, Liao JH, Zhang XT. Nanoporous boron nitride aerogel film and its smart composite with phase change materials. ACS Nano. 2020;14(12):16590. https://doi.org/10.1021/acsnano.0c05931.

    Article  CAS  Google Scholar 

  41. Hou XB, Zhang RB, Fang DN. Novel whisker-reinforced Al2O3–SiO2 aerogel composites with ultra-low thermal conductivity. Ceram Int. 2017;43(12):9547. https://doi.org/10.1016/j.ceramint.2017.04.043.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Talent Introduction Project Foundation of Nantong University (No. 135421615077), the Large Instruments Open Foundation of Nantong University (No. KFJN2237), the Fundamental Research Funds for the Central Universities (No. D5000210522), China Postdoctoral Science Foundation (No. 2021M702665), the Natural Science Foundation of Shaanxi Province (No. 2022JQ-482), Jiangsu Planned Projects for Postdoctoral Research Fund, Basic Research Programs of Taicang (No. TC2021JC01), and 2022 Suzhou Association for Science and Technology Youth Science and Technology Talent Support Project Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Lei Zhou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 4253 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JX., Zhang, J., Ye, XL. et al. Ultralight and compressive SiC nanowires aerogel for high-temperature thermal insulation. Rare Met. 42, 3354–3363 (2023). https://doi.org/10.1007/s12598-023-02370-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02370-5

Keywords

Navigation