Skip to main content
Log in

Computer simulation of super-magnetoelastic behavior near critical region of magnetic materials based on phase-field method

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Since the discovery of ferromagnetic morphotropic phase boundary (MPB) in 2010, the connotation and extension of MPB have been becoming more and more abundant. Over the last dozen years, much experimental work has been done to design magnetostrictive materials based on the MPB principle. However, due to the difficulty in direct experimental observations and the complexity of theoretical treatments, the insight into the microstructure property relationships and underlying mechanisms near the ferromagnetic MPB has not been fully revealed. Here, we have reviewed our recent computer simulation work about the super-magnetoelastic behavior near the critical region of several typical materials. Phase-field modeling and simulation are employed to explore the domain configuration and engineering in single crystals as well as the grain size effect in polycrystals. Besides, a general nano-embryonic mechanism for superelasticity is also introduced. Finally, some future perspectives and challenges are presented to stimulate a deeper consideration of the research paradigm between multiscale modeling and material development.

Graphical Abstract

摘要

自从2010年铁磁准同型相界(MPB)被发现以来,MPB的内涵和外延变得越来越丰富。在过去的十几年里,研究者们开展了大量基于MPB原理来设计磁致伸缩材料的实验工作。然而,由于直接实验观测的困难性和理论处理的复杂性等原因,铁磁MPB附近微结构性质和潜在机制尚未完全被揭示。在这里,我们回顾了近期关于几种典型材料临界区域附近超磁弹性行为的计算机模拟工作。主要包括基于相场模型系统研究了铁磁单晶MPB附近的畴结构和畴工程手段,指出了多晶体系中准同型相界的晶粒尺寸效应;此外,还介绍了一种可广泛描述相界附近超弹行为的纳米胚胎机制。最后,提出了该领域未来的前景和面临的挑战,以激发读者关于多尺度建模与材料开发之间研究范式的深层思考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [60]. Copyright 2016, AIP Publishing

Fig. 2

Reproduced with permission from Ref. [67]. Copyright 2021, AIP Publishing

Fig. 3
Fig. 4

Reproduced with permission from Ref. [78]. Copyright 2019, AIP Publishing

Fig. 5

Similar content being viewed by others

References

  1. Clark AE, Wunfogle M. Modern magnetostrictive materials: classical and nonclassical alloys. Proc SPIE. 2002;4699:421. https://doi.org/10.1117/12.474998.

    Article  Google Scholar 

  2. Deng ZX, Dapino MJ. Review of magnetostrictive vibration energy harvesters. Smart Mater Struct. 2017;26:103001. https://doi.org/10.1088/1361-665X/aa8347.

    Article  Google Scholar 

  3. Jiles DC. Recent advances and future directions in magnetic materials. Acta Mater. 2003;51(19):5907. https://doi.org/10.1016/j.actamat.2003.08.011.

    Article  CAS  Google Scholar 

  4. Olabi AG, Grunwald A. Design and application of magnetostrictive materials. Mater Des. 2008;29:469. https://doi.org/10.1016/j.matdes.2006.12.016.

    Article  CAS  Google Scholar 

  5. Clark AE. Magnetostrictive Rare Earth-Fe2 Compounds. (Edited by Wohlfarth EP) Amsterdam: North-Holland Publishing Co. 1980.531.

  6. Liu JH, Jiang CB, Xu HB. Giant magnetostrictive materials. Sci China Technol Sci. 2012;55(5):1319. https://doi.org/10.1007/s11431-012-4810-0.

    Article  Google Scholar 

  7. Ren WJ, Zhang ZD. Progress in bulk MgCu2-type rare-earth iron magnetostrictive compounds. Chin Phys B. 2013;22(7):077507. https://doi.org/10.1088/1674-1056/22/7/077507.

    Article  CAS  Google Scholar 

  8. Atulasimha J, Flatau AB. A review of magnetostrictive iron-gallium alloys. Smart Mater Struct. 2011;20:043001. https://doi.org/10.1088/0964-1726/20/4/043001.

    Article  CAS  Google Scholar 

  9. Gou JM, Ma TY, Qiao RH, Yang TZ, Liu F, Ren XB. Dynamic precipitation and the resultant magnetostriction enhancement in [001]-oriented Fe–Ga alloys. Acta Mater. 2021;206:116631. https://doi.org/10.1016/j.actamat.2021.116631.

    Article  CAS  Google Scholar 

  10. He YK, Jiang CB, Wu W, Wang B, Duan HP, Wang H, Zhang T, Wang J, Liu J, Zhang Z, Stamenov P, Coey JMD, Xu H. Giant heterogeneous magnetostriction in Fe–Ga alloys: Effect of trace element doping. Acta Mater. 2016;109:177. https://doi.org/10.1016/j.actamat.2016.02.056.

    Article  CAS  Google Scholar 

  11. Jang CB, He YK. Recent development of Fe–Ga magnetostrictive materials. Met Funct Mater. 2016;23:1. https://doi.org/10.13228/j.boyuan.issn1005-8192.2016068.

    Article  Google Scholar 

  12. Chen H, Wang YD, Nie Z, Li R, Cong D, Liu W, Ye F, Liu Y, Cao P, Tian F, Shen X, Yu R, Vitos L, Zhang M, Li S, Zhang X, Zheng H, Mitchell JF, Ren Y. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat Mater. 2020;19(7):712. https://doi.org/10.1038/s41563-020-0645-4.

    Article  CAS  Google Scholar 

  13. Otsuka K, Wayman CM. Shape Memory Materials. Cambridge: Cambridge University Press. 1998.49.

    Google Scholar 

  14. Ji Y, Wang D, Wang Y, Zhou Y, Xue D, Otsuka K, Wang Y, Ren X. Ferroic glasses. npj Comput Mater. 2017;3:43. https://doi.org/10.1038/s41524-017-0039-6.

    Article  CAS  Google Scholar 

  15. Wadhawan VK. Ferroelasticity. Bull Mater Sci. 1984;6:733. https://doi.org/10.1007/BF02744001.

    Article  CAS  Google Scholar 

  16. Otsuka K, Ren XB. PhysicaJ metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50:511. https://doi.org/10.1016/j.pmatsci.2004.10.001.

    Article  CAS  Google Scholar 

  17. Salje EKH. Phase Transitions in Ferroelastic and Co-Elastic Crystals. New York: Cambidge University Press. 1990.1.

    Google Scholar 

  18. Wang D, Wang YZ, Zhang Z, Ren XB. Modeling abnonnal strain states in ferroelastic systems: the role of point defects. Phys Rev Lett. 2010. https://doi.org/10.1103/PhysRevLett.105.205702.

    Article  Google Scholar 

  19. Coey JMD. Magnetism and Magnetic Materials. Cambridge: Cambridge University Press. 2010. 3.

    Google Scholar 

  20. Newnham RE. Phase transformations in smart materials. Acta Crystallogr A. 1998;54:729. https://doi.org/10.1107/S010876739800912X.

    Article  Google Scholar 

  21. Chopra HD, Wuttig M. Non-Joulian magnetostriction. Nature. 2015;521(7552):340. https://doi.org/10.1038/nature14459.

    Article  CAS  Google Scholar 

  22. Laver M, Mudivarthi C, Cullen JR, Flatau AB, Chen WC, Watson SM, Wuttig M. Magnetostriction and magnetic heterogeneities in iron-gallium. Phys Rev Lett. 2010;105(2):027202. https://doi.org/10.1103/PhysRevLett.105.027202.

    Article  CAS  Google Scholar 

  23. Williams CM, Koon NC. Anisotropy energy measurements on single-crystal Tb0.15Ho0.85Fe2. Phys Rev B. 1975;11(11):4360. https://doi.org/10.1103/physrevb.11.4360.

    Article  CAS  Google Scholar 

  24. Zhang FX, Hu PQ, Zhang ZM, Gou JH, Wang DH. Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation. Rare Met. 2023;42(2):606. https://doi.org/10.1007/s12598-022-02145-4.

    Article  CAS  Google Scholar 

  25. Wang BW, Lee WJ, Song JS, Min BK, Hao YM. Structure, magnetic properties, and magnetostriction of Sm0.5R0.5(Fe1-xCox)2 (R = Nd, Pr) compounds. J Appl Phys. 2002;91(11):9246. https://doi.org/10.1063/1.1473227.

    Article  CAS  Google Scholar 

  26. Ren WJ, Liu JJ, Li D, Liu W, Zhang ZD. Direct experimental evidence for anisotropy compensation between Dy3+ and Pr3+ ions. Appl Phys Lett. 2006;89(12):102502. https://doi.org/10.1063/1.2356109.

    Article  CAS  Google Scholar 

  27. Yang S, Bao H, Zhou C, Wang Y, Ren X, Matsushita Y, Katsuya Y, Tanaka M, Kobayashi K, Song X, Gao J. Large magnetostriction from morphotropic phase boundary in ferromagnets. Phys Rev Lett. 2010;104(19): 197201. https://doi.org/10.1103/PhysRevLett.104.197201.

    Article  CAS  Google Scholar 

  28. Bergstrom R Jr, Wuttig M, Cullen J, Zavalij P, Briber R, Dennis C, Garlea VO, Laver M. Morphotropic phase boundaries in ferromagnets: Tb1-xDyxFe2 alloys. Phys Rev Lett. 2013;111(1): 017203. https://doi.org/10.1103/PhysRevLett.111.017203.

    Article  CAS  Google Scholar 

  29. Hu CC, Shi YG, Shi DN, Tang SL, Fan JY, Du YW. Anisotropy compensation and magnetostrictive properties in Tbx Dy1−x(Fe0.9Mn0.1)1.93 Laves compounds: experimental and theoretical analysis. J Appl Phys. 2013;113(20): 203906. https://doi.org/10.1063/1.4807583.

    Article  CAS  Google Scholar 

  30. Hu CC, Zhang Z, Cheng XX, Huang HB, Shi YG, Chen LQ. Ultrasensitive magnetostrictive responses at the pre-transitional rhombohedral side of ferromagnetic morphotropic phase boundary. J Mater Sci. 2021;56(2):1713. https://doi.org/10.1007/s10853-020-05300-3.

    Article  CAS  Google Scholar 

  31. Hunter D, Osborn W, Wang K, Kazantseva N, Hattrick-Simpers J, Suchoski R, Takahashi R, Young ML, Mehta A, Bendersky LA, Lofland SE, Wuttig M, Takeuchi I. Giant magnetostriction in annealed Co1–xFex thin-films. Nat Commun. 2011;2:518. https://doi.org/10.1038/ncomms1529.

    Article  CAS  Google Scholar 

  32. Ma TY, Liu XL, Gou JM, Wang Y, Wu C, Zhou C, Wang Y, Yang S, Ren XB. Sign-changed-magnetostriction effect of morphotropic phase boundary in pseudobinary DyCo2-DyFe2 Laves compounds. Phys Rev Mater. 2019;3:034411. https://doi.org/10.1103/PhysRevMaterials.3.034411.

    Article  Google Scholar 

  33. Wang B, Jin Y. Magnetization and magnetostriction of Terfenol-D near spin reorientation boundary. J Appl Phys. 2012;111:103908. https://doi.org/10.1063/1.4718435.

    Article  CAS  Google Scholar 

  34. Zhang D, Ma X, Yang S, Song X. Role of the electronic structure in the morphotropic phase boundary of TbxDy1−xCo2 studied by first-principle calculation. J Alloys Compd. 2016;689:1083. https://doi.org/10.1016/j.jallcom.2016.08.034.

    Article  CAS  Google Scholar 

  35. Zhou C, Ren S, Bao H, Yang S, Yao YG, Ji Y, Ren XB, Matsushita Y, Katsuya Y, Tanaka M, Kobayashi K. Inverse effect of morphotropic phase boundary on the magnetostriction of ferromagnetic Tb1-xGdxCo2. Phys Rev BR. 2014;89(10):100101. https://doi.org/10.1103/PhysRevB.89.100101.

    Article  CAS  Google Scholar 

  36. Chen LQ, Zhao Y. From classical thermodynamics to phase-field method. Prog Mater Sci. 2022;124:100868. https://doi.org/10.1016/J.PMATSCI.2021.100868.

    Article  CAS  Google Scholar 

  37. Huang YY, Jin YM. Phase field modeling of magnetization processes in growth twinned Terfenol-D crystals. Appl Phys Lett. 2008;93(14):142504. https://doi.org/10.1063/1.2996586.

    Article  CAS  Google Scholar 

  38. Jin YM. Effects of magnetostatic interaction on domain microstructure evolution in magnetic shape memory alloys: phase field simulation. Philos Mag. 2010;90(1–4):169. https://doi.org/10.1080/14786430902758671.

    Article  CAS  Google Scholar 

  39. Rao WF, Cheng TL, Wang YU. Aging-stabilization of ferroelectric domains and internal electric field due to short-range ordering of charged point defects: phase field modeling. Appl Phys Lett. 2010;96:122903. https://doi.org/10.1063/1.3371722.

    Article  CAS  Google Scholar 

  40. Rao WF, Khachaturyan AG. Superfunctionalities in nanodispersive precipitation-hardened alloys. Phys Rev Lett. 2012;109:115704. https://doi.org/10.1103/PhysRevLett.109.115704.

    Article  CAS  Google Scholar 

  41. Rao WF, Xiao KW, Cheng TL, Zhou JE, Wang YU. Control of domain configurations and sizes in crystallographically engineered ferroelectric single crystals: phase field modeling. Appl Phys Lett. 2010;97:162901. https://doi.org/10.1063/1.3501139.

    Article  CAS  Google Scholar 

  42. Tourret D, Liu H, Llorca J. Phase-field modeling of microstructure evolution: recent applications, perspectives and challenges. Prog Mater Sci. 2022;123:100810. https://doi.org/10.1016/J.PMATSCI.2021.100810.

    Article  CAS  Google Scholar 

  43. Ke X, Wang D, Ren X, Wang Y. Polarization spinodal at ferroelectric morphotropic phase boundary. Phys Rev Lett. 2020;125:127602. https://doi.org/10.1103/PhysRevLett.125.127602.

    Article  CAS  Google Scholar 

  44. Liu H, Chen J, Huang H, Fan L, Ren Y, Pan Z, Deng J, Chen LQ, Xing X. Role of reversible phase transformation for strong piezoelectric performance at the morphotropic phase boundary. Phys Rev Lett. 2018;120(5):055501. https://doi.org/10.1103/PhysRevLett.120.055501.

    Article  CAS  Google Scholar 

  45. Rao WF, Khachaturyan AG. Phase field theory of proper displacive phase transformations: structural anisotropy and directional flexibility, a vector model, and the transformation kinetics. Acta Mater. 2011;59(11):4494. https://doi.org/10.1016/j.actamat.2011.03.072.

    Article  CAS  Google Scholar 

  46. Rao WF, Wuttig M, Khachaturyan AG. Giant nonhysteretic responses of two-phase nanostructured alloys. Phys Rev Lett. 2011;106:105703. https://doi.org/10.1103/PhysRevLett.106.105703.

    Article  CAS  Google Scholar 

  47. Wang YU. Field-induced inter-ferroelectric phase transformations and domain mechanisms in high-strain piezoelectric materials: insights from phase field modeling and simulation. J Mater Sci. 2009;44(19):5225. https://doi.org/10.1007/s10853-009-3663-9.

    Article  CAS  Google Scholar 

  48. Zhang JX, Chen LQ. Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater. 2005;53(9):2845. https://doi.org/10.1016/j.actamat.2005.03.002.

    Article  CAS  Google Scholar 

  49. Hubert A, Schafer R. Magnetic Domains: the analysis of Magnetic Microstructures. Berlin: Springer. 1998.35.

    Google Scholar 

  50. Khachaturyan AG. The Theory of Structural transformation in Solids. New York: Wiley. 1983. 57.

    Google Scholar 

  51. Jaffe B, Cook WR, Jaffe H. Piezoelectric Ceramics. New York: Academic Press. 1971. 140.

    Google Scholar 

  52. Uchino K. Ferroelectric Devices. New York: Marcel Dekker; 2000.

    Google Scholar 

  53. Ahart M, Somayazulu M, Cohen RE, Ganesh P, Dera P, Mao HK, Hemley RJ, Ren Y, Liermann P, Wu ZG. Origin of morphotropic phase boundaries in ferroelectrics. Nature. 2008;451:545. https://doi.org/10.1038/nature06459.

    Article  CAS  Google Scholar 

  54. Lummen TT, Gu Y, Wang J, Lei S, Xue F, Kumar A, Barnes AT, Barnes E, Denev S, Belianinov A, Holt M, Morozovska AN, Kalinin SV, Chen LQ, Gopalan V. Thermotropic phase boundaries in classic ferroelectrics. Nat Commun. 2014;5:3172. https://doi.org/10.1038/ncomms4172.

    Article  CAS  Google Scholar 

  55. Ma T, Liu X, Pan X, Li X, Jiang Y, Yan M, Li H, Fang M, Ren X. Local rhombohedral symmetry in Tb0.3Dy0.7Fe2 near the morphotropic phase boundary. Appl Phys Lett. 2014;105(19):192407. https://doi.org/10.1063/1.4901646.

    Article  CAS  Google Scholar 

  56. Wu GH, Zhao XG, Wang JH, Li JY, Jia KC, Zhan WS. <111> oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible. Appl Phys Lett. 1995;67:2005. https://doi.org/10.1063/1.114768.

    Article  CAS  Google Scholar 

  57. Sery RS, Savage HT, Tanner BK, Clark GF. Domain configurations in single crystal TbFe2 and Tb0.27Dy0.73Fe2. J Appl Phys. 1978;49:2010. https://doi.org/10.1063/1.324779.

    Article  CAS  Google Scholar 

  58. Holden AP, Lord DG, Grundy PJ. Transmission electron microscopy of Terfenol-D crystals. J Appl Phys. 1996;79:4650. https://doi.org/10.1063/1.361693.

    Article  CAS  Google Scholar 

  59. Lord DG, Holden AP, Grundy PJ. Magnetic force microscopy of Terfenol-D fracture surfaces. J Appl Phys. 1997;81:5728. https://doi.org/10.1063/1.364650.

    Article  CAS  Google Scholar 

  60. Hu CC, Yang TN, Huang HB, Hu JM, Wang JJ, Shi YG, Shi DN, Chen LQ. Phase-field simulation of domain structures and magnetostrictive response in Tb1-xDyxFe2 alloys near morphotropic phase boundary. Appl Phys Lett. 2016;108:141908. https://doi.org/10.1063/1.4945684.

    Article  CAS  Google Scholar 

  61. Zhou C, Ke XQ, Yao YG, Yang S, Ji YC, Liu WF, Yang YD, Zhang LX, Hao YS, Ren S, Zhang L, Ren XB. Evolution from successive phase transitions to “morphotropic phase boundary” in BaTiO3-based ferroelectrics. Appl Phys Lett. 2018;112:182903. https://doi.org/10.1063/1.5028302.

    Article  CAS  Google Scholar 

  62. Xue D, Zhou Y, Bao H. Large piezoelectric effect in Pb-free Ba(Ti, Sn)O3–x(Ba, Ca)TiO3 ceramics. Appl Phys Lett. 2011;99:122901. https://doi.org/10.1063/1.3640214.

    Article  CAS  Google Scholar 

  63. Hao YS, Liu C, He LQ, Ji YC, Zhao L, Gao JH, Guo MY, Hou ZF, Da B. Effect of thermal-cycling on the piezoelectricity of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 Pb-free piezoceramic. J Alloys Compd. 2020;847:152462. https://doi.org/10.1016/j.jallcom.2020.156462.

    Article  CAS  Google Scholar 

  64. Zhou C, Liu W, Xue D, Ren X, Bao H, Gao J, Zhang L. Triple-point-type morphotropic phase boundary based large piezoelectric Pb-free material-Ba(Ti0.8Hf0.2)O3-(Ba0.7Ca0.3)TiO3. Appl Phys Lett. 2012;100:222910. https://doi.org/10.1063/1.4724216.

    Article  CAS  Google Scholar 

  65. Atzmony U, Dariel MP, Bauminger ER, Lebenbaum D, Nowik I, Ofer S. Magnetic anisotropy and spin rotations in HoxTb1-xFe2 cubic laves compounds. Phys Rev Lett. 1972;28(4):244. https://doi.org/10.1103/physrevlett.28.244.

    Article  CAS  Google Scholar 

  66. Williams CM, Koon NC. Anisotropy energy measurements on single-crystal Tb0.15Ho0.5Fe2. Phys Rev B. 1975;11:4360. https://doi.org/10.1103/physrevb.11.4360.

    Article  CAS  Google Scholar 

  67. Hu CC, Zhang Z, Cai TT, Xu YX, Hao JG, Shi YG, Yang TN, Chen LQ. Room-temperature ultrasensitive magnetoelastic responses near the magnetic-ordering tricritical region. J Appl Phys. 2021;130:063901. https://doi.org/10.1063/5.0056712.

    Article  CAS  Google Scholar 

  68. An Z, Xie S, Zhang N, Zhuang J, Glazer AM, Ren W, Ye ZG. Ferroelastic domain hierarchy in the intermediate state of PbZr0.98Ti0.02O3 single crystal. APL Mater. 2021;9(3):030702. https://doi.org/10.1063/5.0038996.

    Article  CAS  Google Scholar 

  69. Dong G, Li S, Yao M, Zhou Z, Zhang YQ, Han X, Luo Z, Yao J, Peng B, Hu Z, Huang H, Jia T, Li J, Ren W, Ye ZG, Ding X, Sun J, Nan CW, Chen LQ, Li J, Liu M. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science. 2019;366(6464):475. https://doi.org/10.1126/science.aay7221.

    Article  CAS  Google Scholar 

  70. Lu G, Li S, Ding X, Sun J, Salje EKH. Electrically driven ferroelastic domain walls, domain wall interactions, and moving needle domains. Phys Rev Mater. 2019;3(11):114405. https://doi.org/10.1103/PhysRevMaterials.3.114405.

    Article  CAS  Google Scholar 

  71. Salje EKH, Carpenter MA. Domain glasses: twin planes, Bloch lines, and Bloch points. Phys Status Solidi B. 2015;252(12):2639. https://doi.org/10.1002/pssb.201552430.

    Article  CAS  Google Scholar 

  72. Viehland DD, Salje EKH. Domain boundary-dominated systems: adaptive structures and functional twin boundaries. Adv Phys. 2014;63(4):267. https://doi.org/10.1080/00018732.2014.974304.

    Article  CAS  Google Scholar 

  73. Yao Q, Park JW, Oh E, Yeom HW. Engineering domain wall electronic states in strongly correlated van der waals material of 1T-TaS2. Nano Lett. 2021;21(22):9699. https://doi.org/10.1021/acs.nanolett.1c03522.

    Article  CAS  Google Scholar 

  74. Zheng L, Lu X, Shang H, Xi Z, Wang R, Wang J, Zheng P, Cao W. Hysteretic phase transition sequence in 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystal driven by electric field and temperature. Phys Rev B. 2015;91(18):184105. https://doi.org/10.1103/PhysRevB.91.184105.

    Article  CAS  Google Scholar 

  75. Rao WF, Wang YU. Domain wall broadening mechanism for domain size effect of enhanced piezoelectricity in crystallographically engineered ferroelectric single crystals. Appl Phys Lett. 2007;90:041915. https://doi.org/10.1063/1.2435584.

    Article  CAS  Google Scholar 

  76. Rao WF, Wang YU. Bridging domain mechanism for phase coexistence in morphotropic phase boundary ferroelectrics. Appl Phys Lett. 2007;90:182906. https://doi.org/10.1063/1.2736276.

    Article  CAS  Google Scholar 

  77. Zhang Y, Xue F, Wang B, Hu JM, Dong S, Liu JM, Chen LQ. Stability and low-energy orientations of interphase boundaries in multiaxial ferroelectrics: phase-field simulations. Phys Rev B. 2022;105(1):014108. https://doi.org/10.48550/arXiv.2201.10074.

    Article  CAS  Google Scholar 

  78. Hu CC, Zhang Z, Yang TN, Shi YG, Cheng XX, Ni JJ, Hao JG, Rao WF, Chen LQ. Phase field simulation of grain size effects on the phase coexistence and magnetostrictive behavior near the ferromagnetic morphotropic phase boundary. Appl Phys Lett. 2019;115(16):162402. https://doi.org/10.1063/1.5118927.

    Article  CAS  Google Scholar 

  79. Ahadi A, Matsushita Y, Sawaguchi T, Sun QP, Tsuchiya K. Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy. Acta Mater. 2017;124:79. https://doi.org/10.1016/j.actamat.2016.10.054.

    Article  CAS  Google Scholar 

  80. Atulasimha J, Flatau AB. A review of magnetostrictive iron-gallium alloys. Smart Mater Struct. 2011;20:043001. https://doi.org/10.1088/0964-1726/20/4/043001.

    Article  CAS  Google Scholar 

  81. Hao YL, Wang HL, Li T, Cairney JM, Ceguerra AV, Wang YD, Wang Y, Wang D, Obbard EG, Li SJ, Yang R. Superelasticity and tunable thermal expansion across a wide temperature range. J Mater Sci Technol. 2016;32(8):705. https://doi.org/10.1016/j.jmst.2016.06.017.

    Article  CAS  Google Scholar 

  82. Lin YC, Lin CF. Effects of phase transformation on the microstructures and magnetostriction of Fe-Ga and Fe-Ga-Zn ferromagnetic shape memory alloys. J Appl Phys. 2015;117:17A920. https://doi.org/10.1063/1.4917185.

    Article  CAS  Google Scholar 

  83. Morris JW, Hanlumyuang Y, Sherburne M, Withey E, Chrzan DC, Kuramoto S, Hayashi Y, Hara M. Anomalous transformation-induced deformation in <110> textured gum metal. Acta Mater. 2010;58(9):3271. https://doi.org/10.1016/j.actamat.2010.02.001.

    Article  CAS  Google Scholar 

  84. Nakai M, Niinomi M, Akahori T, Tsutsumi H, Feng X, Ogawa M. Anomalous thermal expansion of cold-rolled Ti-Nb-Ta-Zr alloy. Mater Trans. 2009;50(2):423. https://doi.org/10.2320/matertrans.MRP2008380.

    Article  CAS  Google Scholar 

  85. Resnina N, Belyaev S, Shelyakov A, Rubanik V, Rubanik V, Konopleva R, Chekanov V, Ubyivovk E, Krzhizhanovskaya M. Pre-martensitic phenomena in Ti40.7Hf9.5Ni44.8Cu5 shape memory alloy. Intermetallics. 2015;67:69. https://doi.org/10.1016/j.intermet.2015.07.018.

    Article  CAS  Google Scholar 

  86. Sarkar S, Ren X, Otsuka K. Evidence for strain glass in the ferroelastic-martensitic system Ti50-xNi50+x. Phys Rev Lett. 2005;95(20):205702. https://doi.org/10.1103/physrevlett.95.205702.

    Article  Google Scholar 

  87. Wang D, Lv DC, Gao YP, Wang Y, Ren XB, Wang YZ. Defect strength and strain glass state in ferroelastic systems. J Alloys Compd. 2016;661:100. https://doi.org/10.1016/j.jallcom.2015.11.095.

    Article  CAS  Google Scholar 

  88. Xing Q, Du Y, Mcqueeney RJ, Lograsso TA. Structural investigations of Fe-Ga alloys: phase relations and magnetostrictive behavior. Acta Mater. 2008;56(16):4536. https://doi.org/10.1016/j.actamat.2008.05.011.

    Article  CAS  Google Scholar 

  89. Yano T, Murakami Y, Shindo D, Hayasaka Y, Kuramoto S. Transmission electron microscopy studies on nanometer-sized omega phase produced in gum metal. Scripta Mater. 2010;63(5):536. https://doi.org/10.1016/j.scriptamat.2010.05.025.

    Article  CAS  Google Scholar 

  90. Yasuda HY, Oda Y, Aoki M, Fukushima K, Umakoshi Y. Multimode pseudoelasticity in Fe–23.8 at% Ga single crystals with D03 structure. Intermetallics. 2008;16(11–12):1298. https://doi.org/10.1016/j.intermet.2008.08.005.

    Article  CAS  Google Scholar 

  91. Xu YC, Liu LW, Ma FDD, Wang J, Rao WF. Large enhancement of magnetic-field-induced strain in two-phase ferromagnetic nanodispersions. Phys Rev B. 2018;98:094110. https://doi.org/10.1103/PhysRevB.98.094110.

    Article  CAS  Google Scholar 

  92. Narita F, Fox M. A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv Eng Mater. 2018;20(5):1700743. https://doi.org/10.1002/adem.201700743.

    Article  CAS  Google Scholar 

  93. Rao WF, Xu YC, Hu CC, Khachaturyan AG. Magnetoelastic equilibrium and super-magnetostriction in highly defected pre-transitional materials. Acta Mater. 2020;188:539. https://doi.org/10.1016/j.actamat.2020.02.021.

    Article  CAS  Google Scholar 

  94. Xu YC, Hu CC, Liu LW, Wang J, Rao WF, Morris JW, Khachaturyan AG. A nano-embryonic mechanism for superelasticity, elastic softening, invar and elinvar effects in defected pre-transitional materials. Acta Mater. 2019;171:240. https://doi.org/10.1016/j.actamat.2019.04.027.

    Article  CAS  Google Scholar 

  95. Xu YC, Rao WF, Morris JW, Khachaturyan AG. Nanoembryonic thermoelastic equilibrium and enhanced properties of defected pretransitional materials. npj Comput Mater. 2018;4:58. https://doi.org/10.1038/s41524-018-0114-7.

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Nos. 51701091, 12174210 and 52174346), Shandong Provincial Natural Science Foundation, China (Nos. ZR2020QE028 and ZR2022ME030), the Innovation Team of Higher Educational Science and Technology Program in Shandong Province (No. 2019KJA025), the Research Foundation of Liaocheng University (No. 318012119) and the Science and Technology Innovation Foundation of Liaocheng University (No. CXCY2021139).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Chao Hu or Wei-Feng Rao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Hu, CC., Zhou, AH. et al. Computer simulation of super-magnetoelastic behavior near critical region of magnetic materials based on phase-field method. Rare Met. 42, 2477–2488 (2023). https://doi.org/10.1007/s12598-023-02294-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02294-0

Keywords

Navigation