Skip to main content

Advertisement

Log in

Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Supercapacitors (SCs) have been considered as the most promising energy storage device due to high power density, long cycle life, and fast energy storage and efficient delivery. The excellent electrode materials of SCs generally have based on large porous structure, excellent conductivity, and heteroatom doping for charge transfer. Among various electrode materials, biomass-derived carbon materials have received widespread attention owing to excellent performances, environmental friendliness, low-cost and renewability. Additionally, composites materials based on biomass-derived carbon and transition metal-based material can obtain more advantages of structural and performance than single component, which opens up a new way for the fabrication of high-performance SC electrode materials. Therefore, this review aims to the recent progress on the design and fabrication of biomass-derived carbons/transition metal-based composites in supercapacitor application. Finally, the development trends and challenges of biomass-derived electrode materials have been discussed and prospected.

Graphical abstract

摘要

超级电容器(SCs)由于功率密度高、循环寿命长、储能速度快、输送效率高等优点,被认为是最有前途的储能装置。 作为SCs的优良电极材料通常具有较大的多孔结构、优良的导电性和用于电荷转移的杂原子掺杂。在各种电极材料中,生物质碳材料因其优异的性能、环境友好、低成本和可再生性而受到广泛关注。此外,基于生物质衍生碳和过渡金属基材料构成的复合材料可以获得比单组分更多的结构和性能优势,为高性能SCs电极材料的制备开辟了新途径。因此,本综述旨在介绍生物质衍生碳/过渡金属基复合材料在超级电容器应用中的设计和制备的最新进展。最后,对生物质电极材料的发展趋势和挑战进行了讨论和展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7(11):845. https://doi.org/10.1038/nmat2297.

    Article  CAS  Google Scholar 

  2. Naskar P, Chakraborty P, Kundu D, Maiti A, Biswas B, Banerjee A. Envisaging future energy storage materials for supercapacitors: an ensemble of preliminary attempts. Chem Select. 2021;6(5):1127. https://doi.org/10.1002/slct.202100049.

    Article  CAS  Google Scholar 

  3. Gogotsi Y, Simon P. True performance metrics in electrochemical energy storage. Science. 2011;334(6058):917. https://doi.org/10.1126/science.1213003.

    Article  CAS  Google Scholar 

  4. Gu W, Yushin G. Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip Rev Energy Environ. 2014;3(5):424. https://doi.org/10.1002/wene.102.

    Article  CAS  Google Scholar 

  5. Thounthong P, Chunkag V, Sethakul P, Sikkabut S, Davat B. Energy management of fuel cell/solar cell/supercapacitor hybrid power source. J Power Sources. 2011;196(1):313. https://doi.org/10.1016/j.jpowsour.2010.01.051.

    Article  CAS  Google Scholar 

  6. Huang Y, Zhi CY. Functional flexible and wearable supercapacitors. J Phys D. 2017;50:273001. https://doi.org/10.1088/1361-6463/aa73b8.

    Article  CAS  Google Scholar 

  7. Wang YG, Song YF, Xia YY. Electrochemical capacitors: mechanism, materials systems, characterization and applications. Chem Soc Rev. 2016;45:5925. https://doi.org/10.1039/C5CS00580A.

    Article  CAS  Google Scholar 

  8. Bi Z, Kong Q, Cao Y, Sun G, Fangyuan S, Wei X, Li X, Ahmad A, Xie L, Chen CM. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A. 2019;7(27):16028. https://doi.org/10.1039/C9TA04436A.

    Article  CAS  Google Scholar 

  9. Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon. 2001;39(6):937. https://doi.org/10.1016/S0008-6223(00)00183-4.

    Article  CAS  Google Scholar 

  10. Lota G, Fic K, Frackowiak E. Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci. 2011;4:1592. https://doi.org/10.1039/C0EE00470G.

    Article  CAS  Google Scholar 

  11. Tao XY, Zhang XB, Zhang L, Cheng JP, Liu F, Luo JH, Luo ZQ, Geise HJ. Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors-sciencedirect. Carbon. 2006;44(8):1425. https://doi.org/10.1016/j.carbon.2005.11.024.

    Article  CAS  Google Scholar 

  12. Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao XS. Graphene-based electrodes for electrochemical energy storage. Energy Environ Sci. 2013;6:1388. https://doi.org/10.1039/C3EE23870A.

    Article  CAS  Google Scholar 

  13. Liu WJ, Ke T, Ling LL, Yu HQ, Hong J. Use of nutrient rich hydrophytes to create N, P-dually doped porous carbon with robust energy storage performance. Environ Sci Technol. 2016;50(22):12421. https://doi.org/10.1021/acs.est.6b03051.

    Article  CAS  Google Scholar 

  14. Paraknowitsch JP, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci. 2013;6:2839. https://doi.org/10.1039/C3EE41444B.

    Article  CAS  Google Scholar 

  15. Huang WH, Chen Z, Wang HY, Wang L, Zhang HB, Wang H. Sponge-like hierarchical porous carbon decorated by Fe atoms for high-efficiency sodium storage and diffusion. Chem Commun. 2022;58(28):4496. https://doi.org/10.1039/D1CC07305B.

    Article  CAS  Google Scholar 

  16. Deng Y, Xie Y, Zou K, Ji X. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A. 2016;4:1144. https://doi.org/10.1039/C5TA08620E.

    Article  CAS  Google Scholar 

  17. Wang J, Nie P, Ding B, Dong SY, Hao XD, Dou H, Zhang XG. Biomass derived carbon for energy storage devices. J Mater Chem A. 2017;5:2411. https://doi.org/10.1039/C6TA08742F.

    Article  CAS  Google Scholar 

  18. Sun YQ, Wu QO, Shi GQ. Graphene based new energy materials. Energy Environ Sci. 2011;4:1113. https://doi.org/10.1039/C0EE00683A.

    Article  CAS  Google Scholar 

  19. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941. https://doi.org/10.1039/C0CS00108B.

    Article  CAS  Google Scholar 

  20. Ren YF, He ZL, Zhao HZ, Zhu T. Fabrication of MOF-derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life. Rare Metals. 2022;41(3):830. https://doi.org/10.1007/s12598-021-01836-8.

    Article  CAS  Google Scholar 

  21. Zhang Y, Liu S, Zheng X, Wang X, Xu Y, Tang H, Kang FY, Yang QH, Luo JY. Biomass carbonization: biomass organs control the porosity of their pyrolyzed carbon. Adv Funct Mater. 2017;27(3):1604687. https://doi.org/10.1002/adfm.201770025.

    Article  CAS  Google Scholar 

  22. Gao F, Jiangying Q, Geng C, Shao G, Mingbo W. Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors. J Mater Chem A. 2016;4(19):7445. https://doi.org/10.1039/C6TA01314G.

    Article  CAS  Google Scholar 

  23. Chen Z, Zhuo H, Hu Y, Zhong L, Peng X, Jing S, Sun R. Self-biotemplate preparation of hierarchical porous carbon with rational mesopore ratio and high oxygen content for an ultrahigh energy-density supercapacitor. ACS Sustain Chem Eng. 2018;6(5):7138.

    Article  CAS  Google Scholar 

  24. Song S, Ma F, Wu G, Ma D, Geng W, Wan J. Facile self-templating large scale preparation of biomass-derived 3d hierarchical porous carbon for advanced supercapacitors. J Mater Chem. 2015;3:18154. https://doi.org/10.1039/C5TA04721H.

    Article  CAS  Google Scholar 

  25. Kim S, Park CB. Bio-inspired synthesis of minerals for energy, environment, and medicinal applications. Adv Funct Mater. 2013;23(1):10. https://doi.org/10.1002/adfm.201201994.

    Article  CAS  Google Scholar 

  26. Chen J, Fang K, Chen Q, Xu J, Wong C. Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano energy. 2018;53:337. https://doi.org/10.1016/j.nanoen.2018.08.056.

    Article  CAS  Google Scholar 

  27. Chen J, Chen M, Zhou W, Xinwu X, Liu B, Zhang W, Wong C. Simplified synthesis of fluoride-free Ti3C2Tx via electrochemical etching toward high-performance electrochemical capacitors. ACS Nano. 2022;16(2):2461. https://doi.org/10.1021/acsnano.1c09004.

    Article  CAS  Google Scholar 

  28. Wang T, Kou Z, Zhang J, Wang H, Zeng YJ, Wei S, Zhang H. Boosting Faradic efficiency of dinitrogen reduction on the negatively charged Mo sites modulated via interstitial Fe doping into a Mo2C nanowall catalyst. Chem Eng J. 2021;412:12861. https://doi.org/10.1016/j.cej.2020.127924.

    Article  CAS  Google Scholar 

  29. Quispe-Garrido V, Cerron-Calle GA, Bazan-Aguilar A, Ruiz-Montoya JG, Baena-Moncada AM. Advances in the design and application of transition metal oxide-based supercapacitors. Open Chemistry. 2021;19(1):709. https://doi.org/10.1515/chem-2021-0059.

    Article  CAS  Google Scholar 

  30. Huang Y, Zhu M, Huang Y, Li H, Pei Z, Xue Q, Zhi C. A modularization approach for linear-shaped functional supercapacitors. J Mater Chem. 2016;4:4580. https://doi.org/10.1039/C6TA00753H.

    Article  CAS  Google Scholar 

  31. Chen X, Wang H, Yi H, Wang X, Yan X, Guo Z. Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. J Phys Chem C. 2014;118(16):8262. https://doi.org/10.1021/jp5009626.

    Article  CAS  Google Scholar 

  32. Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater. 2010;20(20):3595. https://doi.org/10.1002/adfm.201001054.

    Article  CAS  Google Scholar 

  33. Hu CC, Tsou TW. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Commun. 2002;4(2):105. https://doi.org/10.1016/S1388-2481(01)00285-5.

    Article  CAS  Google Scholar 

  34. Xu J, He F, Gai S, Zhang S, Li L, Yang P. Nitrogen-enriched, double-shelled carbon/layered double hydroxide hollow microspheres for excellent electrochemical performance. Nanoscale. 2014;6:10887. https://doi.org/10.1039/C4NR02756F.

    Article  CAS  Google Scholar 

  35. Huang WH, Li XM, Yang XF, Zhang XX, Wang HH, Wang H. The recent progress and perspectives on metal- and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Mater Chem Front. 2021;5:3593. https://doi.org/10.1039/d0qm00936a.

    Article  CAS  Google Scholar 

  36. Li J, Yang M, Wei J, Zhou Z. Preparation and electrochemical performances of doughnut-like Ni(OH)2-Co(OH)2 composites as pseudocapacitor materials. Nanoscale. 2012;4:4498. https://doi.org/10.1039/C2NR30936J.

    Article  CAS  Google Scholar 

  37. Li J, Chen S, Zhu X, She X, Liu T, Zhang H, Yao X. Toward aerogel electrodes of superior rate performance in supercapacitors through engineered hollow nanoparticles of NiCo2O4. Adv Sci. 2017;4(12):1700345. https://doi.org/10.1002/advs.201700345.

    Article  CAS  Google Scholar 

  38. Zhang YN, Li L, Chen JL, Ma YM, Yang XW. MOFs template derived Co/Fe binary phosphide nanocomposite embedded in ternary-doped carbon matrix for efficient water splitting. Ceram Int. 2021;47(21):29535. https://doi.org/10.1016/j.ceramint.2021.01.145.

    Article  CAS  Google Scholar 

  39. Guo H, Feng Q, Kaiwen X, Jingsan X, Zhu J, Zhang C, Liu T. Self‐templated conversion of metallogel into heterostructured TMP@carbon quasiaerogels boosting bifunctional electrocatalysis. Adv Funct Mater. 2019;29(34):1903660. https://doi.org/10.1002/adfm.201903660.

    Article  CAS  Google Scholar 

  40. Guo H, Zhou J, Li Q, Li Y, Zong W, Zhu J, Xu J, Zhang C, Liu T. Emerging dual-channel transition-metal-oxide quasiaerogels by self-embedded templating. Adv Funct Mater. 2020;30(15):2000024. https://doi.org/10.1002/adfm.202000024.

    Article  CAS  Google Scholar 

  41. Zhu T, Liu S, Wan K, Zhang C, Feng Y, Feng W, Liu T. Fluorine and nitrogen dual-doped porous carbon nanosheet-enabled compact electrode structure for high volumetric energy storage. ACS Appl Energy Mater. 2020;3:4949. https://doi.org/10.1021/acsaem.0c00500.

    Article  CAS  Google Scholar 

  42. Ruiz-Montoya JG, Quispe-Garrido VL, Gómez JC, Moncada AMB, Gonçalves JM. Recent progress in and prospects for supercapacitor materials based on metal oxide or hydroxide/biomass-derived carbon composites. Sustain Energy Fuels. 2021;5:5332. https://doi.org/10.1039/D1SE01170G.

    Article  CAS  Google Scholar 

  43. Biswal M, Banerjee A, Deo M, Ogale S. From dead leaves to high energy density supercapacitors. Energy Environ Sci. 2013;6(4):1249. https://doi.org/10.1039/C3EE22325F.

    Article  CAS  Google Scholar 

  44. Zhang Y, Liu X, Wang S, Li L, Dou S. Bio‐nanotechnology in high‐performance supercapacitors. Adv Energy Mater. 2017;7(21):1700592. https://doi.org/10.1002/aenm.201700592.

    Article  CAS  Google Scholar 

  45. Hao P, Zhao Z, Tian J, Li H, Sang Y, Guangwei Y, Cai H, Hong Liu C, Wong AU. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale. 2014;6(20):12120. https://doi.org/10.1039/C4NR03574G.

    Article  CAS  Google Scholar 

  46. Lu H, Zhao XS. Biomass-derived carbon electrode materials for supercapacitors. Sustain Energy Fuels. 2017;1:1265. https://doi.org/10.1039/C7SE00099E.

    Article  CAS  Google Scholar 

  47. Szczęśniaka B, Phuriragpitikhonb J, Chomaa J, Jaroniec M. Recent advances in the development and applications of biomass derived carbons with uniform porosity. J Mater Chem A. 2020;8:18464. https://doi.org/10.1039/D0TA05094F.

    Article  Google Scholar 

  48. Zhao X, Chen H, Kong F, Zhang Y, Wang S, Liu S, Lucia LA, Fatehi P, Pang H. Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review. Chem Eng J. 2019;364:226. https://doi.org/10.1016/j.cej.2019.01.159.

    Article  CAS  Google Scholar 

  49. Benaddi H, Legras D, Rouzaud JN, Beguin F. Influence of the atmosphere in the chemical activation of wood by phosphoric acid. Carbon. 1998;36:306. https://doi.org/10.1016/S0008-6223(98)80123-1.

    Article  CAS  Google Scholar 

  50. Foley NJ, Thomas KM, Forshaw PL, Stanton D, Norman PR. Kinetics of water vapor adsorption on activated carbon. Langmuir. 1997;13:2083. https://doi.org/10.1021/la960339s.

    Article  CAS  Google Scholar 

  51. Macías-García A, Díaz-Díez MA, Cuerda-Correa EM, Olivares-Marín M, Gañan-Gómez J. Study of the pore size distribution and fractal dimension of HNO3-treated activated carbons. Appl Surf Sci. 2006;252(17):5972. https://doi.org/10.1016/j.apsusc.2005.11.010.

    Article  CAS  Google Scholar 

  52. Jin Y, Tian K, Wei L, Zhang X, Guo X. Hierarchically porous microspheres of activated carbon with high surface area from spores for electrochemical double-layer capacitors. J Mater Chem A. 2016;4:15968. https://doi.org/10.1039/C6TA05872H.

    Article  CAS  Google Scholar 

  53. Bin XU, Feng WU, Cao GP, Yang YS. Effect of carbonization temperature on microstructure of PAN-based activated carbon fibers prepared by CO2 activation. New Carbon Mater. 2006;21(1):14. https://doi.org/10.1016/S1872-1508(06)60066-1.

    Article  Google Scholar 

  54. Xiong L, Wang XF, Li L, Jin L, Zhang YG, Song SL, Liu RP. Nitrogen-enriched porous carbon fiber as a CO2 adsorbent with superior CO2 selectivity by air activation. Energy & Fuels. 2019;33:12558. https://doi.org/10.1021/acs.energyfuels.9b02769.

    Article  CAS  Google Scholar 

  55. Li Z, Gu D, Liu Y, Wang H, Wang L. Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors. Chem Eng J. 2020;397:125418. https://doi.org/10.1016/j.cej.2020.125418.

    Article  CAS  Google Scholar 

  56. Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage. J Mater Chem. 2012;22:23710. https://doi.org/10.1039/C2JM34066F.

    Article  CAS  Google Scholar 

  57. Li Y, Zhang X, Yang R, Li G, Hu C. The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residue. RSC Advances. 2015;5:32626. https://doi.org/10.1039/C5RA04634C.

    Article  CAS  Google Scholar 

  58. Shi J, Cui H, Xu J, Yan N, Liu Y. Design and fabrication of hierarchically porous carbon frameworks with Fe2O3 cubes as hard template for CO2 adsorption. Chem Eng J. 2020;389: 124459. https://doi.org/10.1016/j.cej.2020.124459.

    Article  CAS  Google Scholar 

  59. Liu S, Zhao Y, Zhang B, Xia H, Zhou J, Xie W, Li H. Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes. J Power Sources. 2018;381:116. https://doi.org/10.1016/j.jpowsour.2018.02.014.

    Article  CAS  Google Scholar 

  60. Liu R, Zhou A, Zhang X, Mu J, Che H, Wang Y, Wang T, Zhang Z, Kou Z. Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chem Eng J. 2021;412:128611. https://doi.org/10.1016/j.cej.2021.128611.

    Article  CAS  Google Scholar 

  61. Pramitha A, Raviprakash Y. Recent developments and viable approaches for high-performance supercapacitors using transition metal-based electrode materials. J Energy Storage. 2022;49:104120. https://doi.org/10.1016/j.est.2022.104120.

    Article  Google Scholar 

  62. Wang R, Li X, Nie Z, Zhao Y, Wang H. Metal/metal oxide nanoparticles-composited porous carbon for high-performance supercapacitors. J Energy Storage. 2021;38: 102479. https://doi.org/10.1016/j.est.2021.102479.

    Article  Google Scholar 

  63. Gui Z, Zhu H, Gillette E, Han X, Rubloff GW, Hu L, Lee SB. Natural cellulose fiber as substrate for supercapacitor. ACS Nano. 2013;7(7):6037. https://doi.org/10.1021/nn401818t.

    Article  CAS  Google Scholar 

  64. Chen F, Zhou W, Yao H, Fan P, Yang J, Fei Z, Zhong M. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications. Green Chem. 2013;15:3057. https://doi.org/10.1039/C3GC41080C.

    Article  CAS  Google Scholar 

  65. Li Y, Zhao X, Xu Q, Zhang Q, Chen D. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir. 2011;27:6458. https://doi.org/10.1021/la2003063.

    Article  CAS  Google Scholar 

  66. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Ajayan PM. Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci USA. 2007;104:13574. https://doi.org/10.1073/pnas.0706508104.

    Article  CAS  Google Scholar 

  67. Mahadeva SK, Walus K, Stoeber B. Paper as a platform for sensing applications and other devices: a review. ACS Appl Mater Interfaces. 2015;7(16):8345. https://doi.org/10.1021/acsami.5b00373.

    Article  CAS  Google Scholar 

  68. Chee WK, Lim HN, Zainal Z, Huang NM, Harrison I, Andou Y. Flexible graphene-based supercapacitors: a review. Phys Chem C. 2016;120(8):4153. https://doi.org/10.1021/acs.jpcc.5b10187.

    Article  CAS  Google Scholar 

  69. He S, Chen W. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance. Nanoscale. 2015;7:6957. https://doi.org/10.1039/C4NR05895J.

    Article  CAS  Google Scholar 

  70. Azadfalah M, Sedghi A, Hosseini H, Mirhosseini S. Synergic effect of physically-mixed metal organic framework based electrodes as a high efficient material for supercapacitors. J Energy Storage. 2021;44:103248. https://doi.org/10.1016/j.est.2021.103248.

    Article  Google Scholar 

  71. Ray A, Roy A, Saha S, Das S. Transition metal oxide-based nano-materials for energy storage application. Sci Technol Adv Appl Supercapacitors. 2019;1:17. https://doi.org/10.5772/intechopen.80298.

    Article  Google Scholar 

  72. Low WH, Khiew PS, Lim SS, Siong CW, Ezeigwe ER. Recent development of mixed transition metal oxide and graphene/mixed transition metal oxide based hybrid nanostructures for advanced supercapacitors. J Alloys Compd. 2019;775:1324. https://doi.org/10.1016/j.jallcom.2018.10.102.

    Article  CAS  Google Scholar 

  73. Zhang Y, Li L, Su H, Huang W, Dong X. Binary metal oxide: advanced energy storage materials in supercapacitors. J Mater Chem A. 2015;3:43. https://doi.org/10.1039/C4TA04996A.

    Article  CAS  Google Scholar 

  74. Veerakumar P, Sangili A, Manavalan S, Thanasekaran P, Lin KC. Research progress on porous carbon supported metal/metal oxide nanomaterials for supercapacitor electrode applications. Ind Eng Chem Res. 2020;59(14):6347. https://doi.org/10.1021/acs.iecr.9b06010.

    Article  CAS  Google Scholar 

  75. Liu N, Su Y, Wang Z, Wang Z, Xia J, Chen Y, Geng F. Electrostatic-interaction-assisted construction of 3D networks of manganese dioxide nanosheets for flexible high-performance solid-state asymmetric supercapacitors. ACS Nano. 2017;11(8):7879. https://doi.org/10.1021/acsnano.7b02344.

    Article  CAS  Google Scholar 

  76. Yang M, Kim DS, Hong SB, Sim JW, Kim J, Kim SS, Choi BG. MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors. Langmuir. 2017;33:5140. https://doi.org/10.1021/acs.langmuir.7b00589.

    Article  CAS  Google Scholar 

  77. Yu J, Li M, Wang X, Yang Z. Promising high-performance supercapacitor electrode materials from MnO2 nanosheets@bamboo leaf carbon. ACS Omega. 2020;5(26):16299. https://doi.org/10.1021/acsomega.0c02169.

    Article  CAS  Google Scholar 

  78. Chen Q, Chen J, Zhou Y, Song C, Tian Q, Xu J, Wong CP. Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon. Appl Surf Sci. 2018;440:1027. https://doi.org/10.1016/j.apsusc.2018.01.224.

    Article  CAS  Google Scholar 

  79. Wang X, Chen S, Li D, Sun S, Peng Z, Komarneni S, Yang D. Direct interfacial growth of MnO2 nanostructure on hierarchically porous carbon for high-performance asymmetric supercapacitors. ACS Sustain Chem Eng. 2018;6(1):633. https://doi.org/10.1021/acssuschemeng.7b02960.

    Article  CAS  Google Scholar 

  80. Hu X, Xiong W, Wang W, Qin S, Cheng H, Zeng Y, Zhu Z. Hierarchical manganese dioxide/poly(3,4-ethylenedioxythiophene) core–shell nanoflakes on ramie-derived carbon fiber for high-performance flexible all-solid-state supercapacitor. ACS Sustain Chem Eng. 2016;4(3):1201. https://doi.org/10.1021/acssuschemeng.5b01263.

    Article  CAS  Google Scholar 

  81. Zhao N, Deng L, Luo D, Zhang P. One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Appl Surf Sci. 2020;526:146696. https://doi.org/10.1016/j.apsusc.2020.146696.

    Article  CAS  Google Scholar 

  82. Zhang H, Zhang Z, Qi X, Yu J, Cai J, Yang Z. Manganese monoxide/biomass-inherited porous carbon nanostructure composite based on the high water-absorbent agaric for asymmetric supercapacitor. ACS Sustain Chem Eng. 2019;7(4):4284. https://doi.org/10.1021/acssuschemeng.8b06049.

    Article  CAS  Google Scholar 

  83. Raj S, Srivastava SK, Kar P, Roy P. In situ growth of Co3O4 nanoflakes on reduced graphene oxide-wrapped Ni-foam as high performance asymmetric supercapacitor. Electrochimica Acta. 2019;302:327. https://doi.org/10.1016/j.electacta.2019.02.010.

    Article  CAS  Google Scholar 

  84. Li ZY, Bui PT, Kwak DH, Akhtar MS, Yang OB. Enhanced electrochemical activity of low temperature solution process synthesized Co3O4 nanoparticles for pseudo-supercapacitors applications. Ceram Int. 2016;42(1):1879. https://doi.org/10.1016/j.ceramint.2015.09.155.

    Article  CAS  Google Scholar 

  85. Zhou X, Shen X, Xia Z, Zhang Z, Li J, Ma Y, Qu Y. Hollow fluffy Co3O4 cages as efficient electroactive materials for supercapacitors and oxygen evolution reaction. ACS Appl Mater Interfaces. 2015;7(36):20322. https://doi.org/10.1021/acsami.5b05989.

    Article  CAS  Google Scholar 

  86. Zou R, Zhu L, Yan L, Shao B, Cheng H, Sun W. Co3O4 anchored on meshy biomass carbon derived from kelp for high-performance ultracapacitor electrode. Mater Chem Phys. 2021;266:124556. https://doi.org/10.1016/j.matchemphys.2021.124556.

    Article  CAS  Google Scholar 

  87. Zhao Y, Liu Y, Du J, Zhang X, Zhou J, Li X, Pan X. Facile synthesis of interconnected carbon network decorated with Co3O4 nanoparticles for potential supercapacitor applications. Appl Surf Sci. 2019;487:442. https://doi.org/10.1016/j.apsusc.2019.05.142.

    Article  CAS  Google Scholar 

  88. Xie X, Hou C, Wu D, Sun X, Yang X, Zhang Y, Du W. Facile synthesis of various Co3O4/bio-activated carbon electrodes for hybrid capacitor device application. J Alloys Compd. 2022;891:161967. https://doi.org/10.1016/j.jallcom.2021.161967.

    Article  CAS  Google Scholar 

  89. Ji Y, Deng Y, Chen F, Wang Z, Lin Y, Guan Z. Ultrathin Co3O4 nanosheets anchored on multi-heteroatom doped porous carbon derived from biowaste for high performance solid-state supercapacitors. Carbon. 2020;156:359. https://doi.org/10.1016/j.carbon.2019.09.064.

    Article  CAS  Google Scholar 

  90. Ning W, Chen L, Wei W, Chen Y, Zhang X. NiCoO2/NiCoP@Ni nanowire arrays: tunable composition and unique structure design for high-performance winding asymmetric hybrid supercapacitors. Rare Metals. 2020;39:1034. https://doi.org/10.1007/s12598-020-01374-9.

    Article  CAS  Google Scholar 

  91. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012;41:797. https://doi.org/10.1039/C1CS15060J.

    Article  CAS  Google Scholar 

  92. Zhao DD, Bao SJ, Zhou WJ, Li HL. Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem Commun. 2007;9(5):869. https://doi.org/10.1016/j.elecom.2006.11.030.

    Article  CAS  Google Scholar 

  93. Zhang S, Pang Y, Wang Y, Dong B, Lu S, Li M, Ding S. NiO nanosheets anchored on honeycomb porous carbon derived from wheat husk for symmetric supercapacitor with high performance. J Alloys Compd. 2018;735:1722. https://doi.org/10.1016/j.jallcom.2017.11.294.

    Article  CAS  Google Scholar 

  94. Paravannoor A. One-pot synthesis of biochar wrapped Ni/NiO nanobrick composites for supercapacitor applications. J Electroanal Chem. 2018;823:656. https://doi.org/10.1016/j.jelechem.2018.04.060.

    Article  CAS  Google Scholar 

  95. Lai F, Miao YE, Zuo L, Lu H, Huang Y, Liu T. Biomass-derived nitrogen-doped carbon nanofiber network: a facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode. Small. 2016;12(24):3235. https://doi.org/10.1002/smll.201600412.

    Article  CAS  Google Scholar 

  96. Kim DK, Hwang M, Ko D, Kang J, Seong KD, Piao Y. Electrochemical performance of 3D porous Ni-Co oxide with electrochemically exfoliated graphene for asymmetric supercapacitor applications. Electrochim Acta. 2017;246:680. https://doi.org/10.1016/j.electacta.2017.06.099.

    Article  CAS  Google Scholar 

  97. Veeramani V, Madhu R, Chen SM, Sivakumar M. Flower-like nickel–cobalt oxide decorated dopamine-derived carbon nanocomposite for high performance supercapacitor applications. ACS Sustain Chem Eng. 2016;4(9):5013. https://doi.org/10.1021/acssuschemeng.6b01391.

    Article  CAS  Google Scholar 

  98. Zhang C, Xie Z, Yang W, Liang Y, Meng D, He X, Zhang Z. NiCo2O4/biomass-derived carbon composites as anode for high-performance lithium ion batteries. J Power Sources. 2020;451:227761. https://doi.org/10.1016/j.jpowsour.2020.227761.

    Article  CAS  Google Scholar 

  99. Yang G, Park SJ. Nanoflower-like NiCo2O4 grown on biomass carbon coated nickel foam for asymmetric supercapacitor. J Alloys Compd. 2020;835:155270. https://doi.org/10.1016/j.jallcom.2020.155270.

    Article  CAS  Google Scholar 

  100. Nan J, Shi Y, Xiang Z, Wang S, Yang J, Zhang B. Ultrathin NiCo2O4 nanosheets assembled on biomass-derived carbon microsheets with polydopamine for high-performance hybrid supercapacitors. Electrochim Acta. 2019;301:107. https://doi.org/10.1016/j.electacta.2019.01.167.

    Article  CAS  Google Scholar 

  101. Nithya VD, Arul NS. Progress and development of Fe3O4 electrodes for supercapacitors. J Mater Chem A. 2016;4:10767. https://doi.org/10.1039/C6TA02582J.

    Article  CAS  Google Scholar 

  102. Lu XF, Chen XY, Zhou W, Tong YX, Li GR. α-Fe2O3@ PANI core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl Mater Interf. 2015;7(27):14843. https://doi.org/10.1021/acsami.5b03126.

    Article  CAS  Google Scholar 

  103. Pardieu E, Pronkin S, Dolci M, Dintzer T, Pichon BP, Begin D, Boulmedais F. Hybrid layer-by-layer composites based on a conducting polyelectrolyte and Fe3O4 nanostructures grafted onto graphene for supercapacitor application. J Mater Chem A. 2015;3:22877. https://doi.org/10.1039/C5TA05132K.

    Article  CAS  Google Scholar 

  104. Yu SH, Conte DE, Baek S, Lee DC, Park SK, Lee KJ, Pinna N. Structure-properties relationship in iron oxide-reduced graphene oxide nanostructures for Li-ion batteries. Adv Funct Mater. 2013;23(35):4293. https://doi.org/10.1002/adfm.201300190.

    Article  CAS  Google Scholar 

  105. Fang K, Chen J, Zhou X, Mei C, Tian Q, Xu J, Wong CP. Decorating biomass-derived porous carbon with Fe2O3 ultrathin film for high-performance supercapacitors. Electrochim Acta. 2018;261:198. https://doi.org/10.1016/j.electacta.2017.12.140.

    Article  CAS  Google Scholar 

  106. Wu XL, Wen T, Guo HL, Yang S, Wang X, Xu AW. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano. 2013;7(4):3589. https://doi.org/10.1021/nn400566d.

    Article  CAS  Google Scholar 

  107. Makkar P, Malik A, Ghosh NN. Biomass-derived porous carbon-anchoring MnFe2O4 hollow sphere and needle-like NiS for a flexible all-solid-state asymmetric supercapacitor. ACS Appl Energy Mater. 2021;4(6):6015. https://doi.org/10.1021/acsaem.1c00871.

    Article  CAS  Google Scholar 

  108. Gao Y, Zhao L. Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors. Chem Eng J. 2022;430:132745. https://doi.org/10.1016/j.cej.2021.132745.

    Article  CAS  Google Scholar 

  109. Lu ZW, Zhang Y, Sun M, Zou P, Wang X, Wang Y, Huang Q, Chen H, Ye J, Rao H. N-doped carbon dots regulate porous hollow nickel-cobalt sulfide: high-performance electrode materials in supercapacitor and enzymeless glucose sensor. J Power Sources. 2021;516:230685. https://doi.org/10.1016/j.jpowsour.2021.230685.

    Article  CAS  Google Scholar 

  110. Hekmat F, Hosseini H, Shahrokhian S, Unalan HE. Hybrid energy storage device from binder-free zinc-cobalt sulfide decorated biomass-derived carbon microspheres and pyrolyzed polyaniline nanotube-iron oxide. Energy Stor Mater. 2020;25:621. https://doi.org/10.1016/j.ensm.2019.09.022.

    Article  Google Scholar 

  111. Fan G, Li F, Evans DG, Duan X. Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev. 2014;43:7040. https://doi.org/10.1039/C4CS00160E.

    Article  CAS  Google Scholar 

  112. Qin K, Wang L, Wen S, Diao L, Liu P, Li J, Zhao N. Designed synthesis of NiCo-LDH and derived sulfide on heteroatom-doped edge-enriched 3D rivet graphene films for high-performance asymmetric supercapacitor and efficient OER. J Mater Chem A. 2018;6:8109. https://doi.org/10.1039/C8TA01832D.

    Article  CAS  Google Scholar 

  113. Jia H, Wang Z, Zheng X, Lin J, Liang H, Cai Y, Fei W. Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors. Chem Eng J. 2018;351:348. https://doi.org/10.1016/j.cej.2018.06.113.

    Article  CAS  Google Scholar 

  114. Zhi L, Zhang W, Dang L, Sun J, Shi F, Xu H, Lei Z. Holey nickel cobalt layered double hydroxide thin sheets with ultra high areal capacitance. J Power Sources. 2018;387:108. https://doi.org/10.1016/j.jpowsour.2018.03.063.

    Article  CAS  Google Scholar 

  115. Huang B, Wang W, Pu T, Li J, Zhu J, Zhao C, Chen L. Two dimensional porous (Co, Ni)-based monometallic hydroxides and bimetallic layered double hydroxides thin sheets with honeycomb-like nanostructure as positive electrode for high-performance hybrid supercapacitors. J Colloid Interf Sci. 2018;532:630. https://doi.org/10.1016/j.jcis.2018.08.019.

    Article  CAS  Google Scholar 

  116. Li T, Li GH, Li LH, Liu L, Xu Y, Ding HY, Zhang T. Large-scale self assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors. ACS Appl Mater Interf. 2016;8(4):2562. https://doi.org/10.1021/acsami.5b10158.

    Article  CAS  Google Scholar 

  117. Wu S, Hui KS, Hui KN, Kim KH. Electrostatic-induced assembly of graphene-encapsulated carbon@nickel aluminum layered double hydroxide core shell spheres hybrid structure for high-energy and high-power-density asymmetric supercapacitor. ACS Appl Mater Interf. 2017;9(2):1395. https://doi.org/10.1021/acsami.6b09355.

    Article  CAS  Google Scholar 

  118. Wimalasiri Y, Fan R, Zhao XS, Zou L. Assembly of Ni-Al layered double hydroxide and graphene electrodes for supercapacitors. Electrochim Acta. 2014;134:127. https://doi.org/10.1016/j.electacta.2014.04.129.

    Article  CAS  Google Scholar 

  119. Wang J, Song Y, Li Z, Liu Q, Zhou J, Jing X, Jiang Z. In situ Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuel. 2010;24(12):6463. https://doi.org/10.1021/ef101150b.

    Article  CAS  Google Scholar 

  120. Zhao J, Chen J, Xu S, Shao M, Zhang Q, Wei F, Duan X. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv Funct Mater. 2014;24(20):2938. https://doi.org/10.1002/adfm.201303638.

    Article  CAS  Google Scholar 

  121. Gao J, Xuan H, Xu Y, Liang T, Han X, Yang J, Du Y. Interconnected network of zinc-cobalt layered double hydroxide stick onto rGO/nickel foam for high performance asymmetric supercapacitors. Electrochim Acta. 2018;286:92. https://doi.org/10.1016/j.electacta.2018.08.043.

    Article  CAS  Google Scholar 

  122. Yu J, Wang Q, O’Hare D, Sun L. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem Soc Rev. 2017;46:5950. https://doi.org/10.1039/C7CS00318H.

    Article  CAS  Google Scholar 

  123. Li X, Du D, Zhang Y, Xing W, Xue Q, Yan Z. Layered double hydroxides toward high-performance supercapacitors. J Mater Chem A. 2017;5:15460. https://doi.org/10.1039/C7TA04001F.

    Article  CAS  Google Scholar 

  124. Cao Y, Li G, Li X. Graphene/layered double hydroxide nanocomposite: properties, synthesis, and applications. Chem Eng J. 2016;292:207. https://doi.org/10.1016/j.cej.2016.01.114.

    Article  CAS  Google Scholar 

  125. Wang HY, Shi GQ. Layered double hydroxide/graphene composites and their applications for energy storage and conversion. Acta Phys Chim Sin. 2018;34(1):22.

    Google Scholar 

  126. Patel R, Park JT, Patel M, Dash JK, Bhoje Gowd E, Karpoormath R, Mishra A, Kwak J, Kim JH. Transition-metal-based layered double hydroxides tailored for energy conversion and storage. J Mater Chem A. 2018;6(1):12. https://doi.org/10.1039/C7TA09370E.

    Article  CAS  Google Scholar 

  127. Zhao M, Zhao Q, Li B, Xue H, Pang H, Chen C. Recent progress in layered double hydroxide based materials for electrochemical capacitors: design, synthesis and performance. Nanoscale. 2017;9:15206. https://doi.org/10.1039/C7NR04752E.

    Article  CAS  Google Scholar 

  128. Cheng JP, Zhang J, Liu F. Recent development of metal hydroxides as electrode material of electrochemical capacitors. RSC Adv. 2014;4:38893. https://doi.org/10.1039/C4RA06738J.

    Article  CAS  Google Scholar 

  129. Jiang L, Sheng L, Fan Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater. 2018;61:133. https://doi.org/10.1007/s40843-017-9169-4.

    Article  CAS  Google Scholar 

  130. Golmohammadi F, Amiri M. Biomass-derived graphene-based nanocomposite: a facile template for decoration of ultrathin nickel–aluminum layered double hydroxide nanosheets as high-performance supercapacitors. Int J Hydrog Energy. 2020;45(31):15578. https://doi.org/10.1016/j.ijhydene.2020.04.044.

    Article  CAS  Google Scholar 

  131. Ma M, Cai W, Chen Y, Li Y, Tan F, Zhou J. Flower-like NiMn-layered double hydroxide microspheres coated on biomass-derived 3D honeycomb porous carbon for high-energy hybrid supercapacitors. Ind Crops Prod. 2021;166:113472. https://doi.org/10.1016/j.indcrop.2021.113472.

    Article  CAS  Google Scholar 

  132. Dong L, Xu C, Li Y, Huang ZH, Kang F, Yang QH, Zhao X. Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A. 2016;4:4659. https://doi.org/10.1039/C5TA10582J.

    Article  CAS  Google Scholar 

  133. Chen J, Wang X, Wang J, Lee PS. Sulfidation of NiMn-layered double hydroxides/graphene oxide composites toward supercapacitor electrodes with enhanced performance. Adv Energy Mater. 2016;6(5):1501745. https://doi.org/10.1002/aenm.201501745.

    Article  CAS  Google Scholar 

  134. Li S, Yu C, Yang J, Zhao C, Zhang M, Huang H, Qiu J. A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy Environ Sci. 2017;10:1958. https://doi.org/10.1039/C7EE01040K.

    Article  CAS  Google Scholar 

  135. Lei W, Jin D, Liu H, Tong Z, Zhang H. An overview of bacterial cellulose in flexible electrochemical energy storage. ChemSusChem. 2020;13(15):3731. https://doi.org/10.1002/cssc.202001019.

    Article  CAS  Google Scholar 

  136. Wu ZY, Liang HW, Chen LF, Hu BC, Yu SH. Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Acc Chem Res. 2016;49(1):96. https://doi.org/10.1021/acs.accounts.5b00380.

    Article  CAS  Google Scholar 

  137. Liu K, Liu Y, Lin D, Pei A, Cui Y. Materials for lithium-ion battery safety. Sci Adv. 2018. https://doi.org/10.1126/sciadv.aas9820.

    Article  Google Scholar 

  138. Zhu YS, Xiao SY, Li MX, Chang Z, Wang FX, Gao J, Wu YP. Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J Power Sources. 2015;288:368. https://doi.org/10.1016/j.jpowsour.2015.04.117.

    Article  CAS  Google Scholar 

  139. Zhao S, Zeng L, Cheng G, Yu L, Zeng H. Ni/Co-based metal-organic frameworks as electrode material for high performance supercapacitors. Chin Chem Lett. 2019;30(3):605. https://doi.org/10.1016/j.cclet.2018.10.018.

    Article  CAS  Google Scholar 

  140. Wu H, Zhang Y, Yuan W, Zhao Y, Luo S, Yuan X, Cheng L. Highly flexible, foldable and stretchable Ni-Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors. J Mater Chem A. 2018;6:16617. https://doi.org/10.1039/C8TA05673K.

    Article  CAS  Google Scholar 

  141. Yuan Y, Zhou J, Rafiq MI, Dai S, Tang J, Tang W. Growth of NiMn layered double hydroxide and polypyrrole on bacterial cellulose nanofibers for efficient supercapacitors. Electrochim Acta. 2019;295:82. https://doi.org/10.1016/j.electacta.2018.10.090.

    Article  CAS  Google Scholar 

  142. Zhang Y, Zuo L, Zhang L, Yan J, Lu H, Fan W, Liu T. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano Res. 2016;9:2747. https://doi.org/10.1007/s12274-016-1163-1.

    Article  CAS  Google Scholar 

  143. Shen L, Wang J, Xu G, Li H, Dou H, Zhang X. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater. 2015;5(3):1400977.

    Article  Google Scholar 

  144. Yan C, Chen G, Zhou X, Sun J, Lv C. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Funct Mater. 2016;26(9):1428. https://doi.org/10.1002/adfm.201504695.

    Article  CAS  Google Scholar 

  145. Zhou W, Cao X, Zeng Z, Shi W, Zhu Y, Yan Q, Zhang H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci. 2013;6:2216. https://doi.org/10.1039/C3EE40155C.

    Article  CAS  Google Scholar 

  146. Gao Y, Zhang L. Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors. Chem Eng J. 2022;430:132745. https://doi.org/10.1016/j.cej.2021.132745.

    Article  CAS  Google Scholar 

  147. Lin S, Li H, Wu ZQ, Chen Q, Zhu L, Li CD, Zhu XB, Sun YP. Magneto-electrodeposition of 3D cross-linked NiCo-LDH for flexible high-performance supercapacitors. Small Methods. 2022;6(3):2101320. https://doi.org/10.1002/smtd.202101320.

    Article  CAS  Google Scholar 

  148. Zhang Y, Yu L, Hu R, Zhang J, Wang Y, Niu R, Zhu J. Biomass-derived C/N Co-doped Ni(OH)2/NixSy with a sandwich structure for supercapacitors. J Mater Chem A. 2018;6:17417. https://doi.org/10.1039/C8TA06072J.

    Article  CAS  Google Scholar 

  149. Xu L, Liang HW, Li HH, Wang K, Yang Y, Song LT, Yu SH. Understanding the stability and reactivity of ultrathin tellurium nanowires in solution: an emerging platform for chemical transformation and material design. Nano Res. 2015;8:1081. https://doi.org/10.1007/s12274-014-0586-9.

    Article  CAS  Google Scholar 

  150. Xu L, Liang HW, Yang Y, Yu SH. Stability and reactivity: positive and negative aspects for nanoparticle processing. Chem Rev. 2018;118(7):3209. https://doi.org/10.1021/acs.chemrev.7b00208.

    Article  CAS  Google Scholar 

  151. Ma X, Lou Y, Chen XB, Shi Z, Xu Y. Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chem Eng J. 2019;356:227. https://doi.org/10.1016/j.cej.2018.09.034.

    Article  CAS  Google Scholar 

  152. Tang Z, Zhang G, Zhang H, Wang L, Shi H, Wei D, Duan H. MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors. Energy Storage Mater. 2018;10:75. https://doi.org/10.1016/j.ensm.2017.08.009.

    Article  Google Scholar 

  153. Liu C, Bai Y, Li W, Yang F, Zhang G, Pang H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew Chem Int Ed. 2022;61(11):e202116282. https://doi.org/10.1002/anie.202116282.

    Article  CAS  Google Scholar 

  154. Bai Y, Liu C, Li W, Zheng S, Pi Y, Luo Y, Pang H. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew Chem Int Ed. 2021;60(48):25318. https://doi.org/10.1002/anie.202116282.

    Article  CAS  Google Scholar 

  155. Zheng S, Li Q, Xue H, Pang H, Xu Q. A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev. 2020;7(2):305. https://doi.org/10.1093/nsr/nwz137.

    Article  CAS  Google Scholar 

  156. Li W, Guo X, Geng P, Meng D, Jing Q, Chen X, Zhang G, Li H, Qiang X, Braunstein P, Pang H. Rational design and general synthesis of multimetallic metal–organic framework nano‐octahedra for enhanced Li–S battery. Adv Mater. 2021;33(45):2105163. https://doi.org/10.1002/adma.202105163.

    Article  CAS  Google Scholar 

  157. Munn AS, Dunne PW, Tang SVY, Lester EH. Large-scale continuous hydrothermal production and activation of ZIF-8. Chem Commun. 2015;5:12811. https://doi.org/10.1039/C5CC04636J.

    Article  CAS  Google Scholar 

  158. Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Wang B. Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc. 2015;137(15):4920. https://doi.org/10.1021/jacs.5b01613.

    Article  CAS  Google Scholar 

  159. Yilmaz G, Yam KM, Zhang C, Fan HJ, Ho GW. In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Adv Mater. 2017;29(26):1606814. https://doi.org/10.1002/adma.201606814.

    Article  CAS  Google Scholar 

  160. Wang Y, Liu T, Lin X, Chen H, Chen S, Jiang Z, Chen Y, Liu J, Huang J, Liu M. Self-templated synthesis of hierarchically porous n-doped carbon derived from biomass for supercapacitors. ACS Sustainable Chem Eng. 2018;6:13932. https://doi.org/10.1021/acssuschemeng.8b02255.

    Article  CAS  Google Scholar 

  161. Du W, Bai YL, Xu J, Zhao H, Zhang L, Li X, Zhang J. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J Power Sources. 2018;402:281. https://doi.org/10.1016/j.jpowsour.2018.09.023.

    Article  CAS  Google Scholar 

  162. Yue L, Chen L, Liu X, Lu D, Zhou W, Li Y. Honeycomb-like biomass carbon with planted CoNi3 alloys to form hierarchical composites for high-performance supercapacitors. J Colloid Interf Sci. 2022;608:2602. https://doi.org/10.1016/j.jcis.2021.10.184.

    Article  CAS  Google Scholar 

  163. Chen H, Liu T, Mou J, Zhang W, Jiang Z, Liu J, Liu M. Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy. 2019;63:103836. https://doi.org/10.1016/j.nanoen.2019.06.032.

    Article  CAS  Google Scholar 

  164. Zhao G, Xu X, Zhu G, Shi J, Li Y, Zhang S, Yamauchi Y. Flexible nitrogen-doped carbon heteroarchitecture derived from ZIF-8/ZIF-67 hybrid coating on cotton biomass waste with high supercapacitive properties. Microporous Mesoporous Mater. 2020;303: 110257. https://doi.org/10.1016/j.micromeso.2020.110257.

    Article  CAS  Google Scholar 

  165. Wang S, Xiao Z, Zhai S, Wang H, Cai W, Qin L, An Q. Construction of strawberry-like Ni3S2@Co9S8 heteronanoparticle-embedded biomass-derived 3D N-doped hierarchical porous carbon for ultrahigh energy density supercapacitors. J Mater Chem A. 2019;7:17345. https://doi.org/10.1039/C9TA05145G.

    Article  CAS  Google Scholar 

  166. Zhang X, He P, Dong B, Mu N, Liu Y, Yang T, Mi R. Synthesis and characterization of metal-organic framework/biomass-derived CoSe/C@C hierarchical structures with excellent sodium storage performance. Nanoscale. 2021;13:4167. https://doi.org/10.1039/D0NR08569C.

    Article  CAS  Google Scholar 

  167. Zhang X, He P, Dong B, Nan M, Liu Y, Yang T, Mi R. Synthesis and characterization of metal–organic framework/biomass-derived CoSe/C@C hierarchical structures with excellent sodium storage performance. Nanoscale. 2021;13(7):4167. https://doi.org/10.1039/D0NR08569C.

    Article  CAS  Google Scholar 

  168. Liu X, Zheng Y, Wang X. Controllable preparation of polyaniline–graphene nanocomposites using functionalized graphene for supercapacitor electrodes. Chem Eur J. 2015;21(29):10408. https://doi.org/10.1002/chem.201501245.

    Article  CAS  Google Scholar 

  169. Zhang J, Guo H, Yang F, Wang M, Zhang H, Zhang T, Yang W. Walnut shell-derived porous carbon integrated with Ni-MOF/SPANI composites for high-performance supercapacitor. Colloids Surfaces A: Physicochem Eng Asp. 2021;630: 127584. https://doi.org/10.1016/j.colsurfa.2021.127584.

    Article  CAS  Google Scholar 

  170. Zhang W, Li M, Zhong L, Huang J, Liu M. A family of MOFs@wood-derived hierarchical porous composites as freestanding thick electrodes of solid supercapacitors with enhanced areal capacitances and energy densities. Mater Today Energy. 2022;24:100951. https://doi.org/10.1016/j.mtener.2022.100951.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science of China (Nos. 22001156 and 21401121), General Financial Grant from the China Postdoctoral Science Foundation (No. 2017M623095), and Returned Personnel Science Foundation of Shaanxi Province, China (No. 2018044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Nan Zhang or Wen-Huan Huang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YN., Su, CY., Chen, JL. et al. Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor. Rare Met. 42, 769–796 (2023). https://doi.org/10.1007/s12598-022-02142-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02142-7

Keywords

Navigation