Skip to main content

Advertisement

Log in

Recent advances in metastable alloys for hydrogen storage: a review

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Development of new materials with high hydrogen storage capacity and reversible hydrogen sorption performances under mild conditions has very high value in both fundamental and application aspects. In the past years, some new systems with metastable structures, such as ultra-fine nanocrystalline alloys, amorphous alloys, nanoglass alloys, immiscible alloys, high-entropy alloys, have been abundantly studied as hydrogen storage materials. Many new hydrogen storage properties either from the kinetics or thermodynamics aspects have been reported. In this review, recent advances of studies on metastable alloys for hydrogen storage applications have been comprehensively reviewed. The materials preparation methods to synthesize metastable hydrogen storage alloys are firstly reviewed. Afterwards, hydrogen storage properties of the metastable alloys are summarized and discussed, focusing on the unique kinetics and thermodynamics properties by forming of such unique metastable structures. For examples, superior hydrogenation kinetics and higher hydrogen storage capacity have been achieved in Mg-based amorphous and nanoglass alloys. Destabilized thermodynamics properties can be obtained in the immiscible Mg–Mn and Mg–Zr alloys. In addition to highlighting the recent achievements of metastable alloys in the field of hydrogen storage, the remaining challenges and trends of the emerging research are also discussed.

Graphical abstract

摘要

开发具有高储氢容量和可逆吸放氢性能的新型储氢材料具有重要的学术和应用价值。在过去几年中, 一些新型亚稳储氢材料 (如超细纳米晶合金、非晶合金、纳米玻璃合金、互不溶合金、高熵合金等) 受到学界关注, 这些亚稳储氢材料具有新的储氢特性。本文详细综述了亚稳储氢合金在储氢领域的应用研究进展。首先, 介绍了亚稳储氢合金的制备方法。其次, 重点阐述了各类亚稳储氢合金的独特亚稳结构以及由此形成的独特的储氢热力学和动力学性能。例如, 镁基非晶或者纳米玻璃合金具有优异的吸氢动力学性能和更高的储氢容量; 又如, Mg–Mn、Mg–Zr等互不溶合金的热力学稳定性会得到降低。最后, 在总结亚稳储氢合金最近研究成果基础上, 指出了亚稳储氢合金的挑战以及未来的发展方向。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [81]. Copyright 2020, Elsevier. b Hydrogen desorption, c hydrogen absorption properties, and d modification mechanism for nanocrystalline Mg and Mg−NiTiO3. Reproduced with permission from Ref. [82]. Copyright 2021, Elsevier

Fig. 3

Reproduced with permission from Ref. [16]. Copyright 2016, Elsevier

Fig. 4

Reproduced with permission from Ref. [17]. Copyright 2018, Elsevier

Fig. 5

Reproduced with permission from Ref. [117]. Copyright 2016, Elsevier

Fig. 6

Reproduced with permission from Ref. [137]. Copyrights 2017, The Royal Society of Chemistry

Fig. 7

Reproduced with permission from Ref. [146]. Copyright 2011, Elsevier

Fig. 8

Similar content being viewed by others

References

  1. Qin PL, Zeng K, Lan ZQ, Huang XT, Liu HZ, Guo J. Enhanced dydrogen storage properties of mg-al alloy catalyzed with reduced graphene oxide supported with LaClO. Chin J Rare Metals. 2020;44(5):499.

    Google Scholar 

  2. Hua W, Sun HH, Xu F, Wang JG. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020;39(4):335.

    Article  CAS  Google Scholar 

  3. Moradi R, Groth KM. Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis. Int J Hydrogen Energy. 2019;44(23):12254.

    Article  CAS  Google Scholar 

  4. Hirscher M, Yartys VA, Baricco M, Bellosta von Colbe J, Blanchard D, Bowman RC, Broom DP, Buckley CE, Chang F, Chen P, Cho YW, Crivello JC, Cuevas F, David WIF, DenysRV, Dornheim M, Felderhoff M, Filinchuk Y, Froudakis GE, Grant DM, Gray EM, Hauback BC, He T, Humphries TD, Jensen TR, Kim S, Kojima Y, Latroche M, Li HW, Lototskyy MV, Makepeace JW, Møller KT, Naheed L, Ngene P, Noréus D, Nygård MM, Orimo Si, Paskevicius M, Pasquini L. Materials for hydrogen-based energy storage–past, recent progress and future outlook. J Alloys Compd. 2020;827:153548.

  5. Lin HJ, Li HW, Shao H, Lu Y, Asano K. In situ measurement technologies on solid-state hydrogen storage materials: a review. Mater Today Energy. 2020;17:100468.

  6. Ouyang L, Liu F, Wang H, Liu J, Yang XS, Sun L, Zhu M. Magnesium-based hydrogen storage compounds: a review. J Alloys Compd. 2020;832:154865.

  7. Zhang YH, Huang G, Yuan ZM, Guo SH, Qi Y, Zhao DL. Electrochemical hydrogen storage behaviors of as-cast and spun RE–Mg–Ni–Co–Al-based AB2-type alloys applied to Ni–MH battery. Rare Met. 2020;39(2):181.

    Article  CAS  Google Scholar 

  8. Jiang W, Wang H, Zhu M. AlH3 as a hydrogen storage material: recent advances, prospects and challenges. Rare Met. 2021;140(12):3337.

    Article  CAS  Google Scholar 

  9. Vucht JHN, Kuijpers FA, Bruning HCAM. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Research Report. 1970:133.

  10. Buschow KH, Van Mal HH. Phase relations and hydrogen absorption in the lanthanum-nickel system. J Less Common Metals. 1972;29(2):203.

    Article  CAS  Google Scholar 

  11. Reilly J, Wiswall R Jr. Formation and properties of iron titanium hydride. Inorg Chem. 1974;13(1):218.

    Article  CAS  Google Scholar 

  12. Akiba E, Iba H. Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics. 1998;6(6):461.

    Article  CAS  Google Scholar 

  13. Reilly JJ, Wiswall RH. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem. 1968;7:2254.

    Article  CAS  Google Scholar 

  14. Stampfer JF, Holley CE, Suttle JF. The magnesium-hydrogen system. J Am Chem Soc. 1960;82(14):3504.

    Article  CAS  Google Scholar 

  15. Li J, Li B, Yu X, Zhao H, Shao H. Geometrical effect in Mg-based metastable nano alloys with BCC structure for hydrogen storage. Int J Hydrogen Energy. 2019;44(55):29291.

  16. Lin HJ, He M, Pan SP, Gu L, Li HW, Wang H, Ouyang LZ, Liu JW, Ge TP, Wang DP, Wang WH, Akiba E, Zhu M. Towards easily tunable hydrogen storage via a hydrogen-induced glass-to-glass transition in Mg-based metallic glasses. Acta Mater. 2016;120:68.

    Article  CAS  Google Scholar 

  17. Xu C, Lin HJ, Edalati K, Li W, Li L, Zhu Y. Superior hydrogenation properties in a Mg65Ce10Ni20Cu5 nanoglass processed by melt-spinning followed by high-pressure torsion. Scripta Mater. 2018;152:137.

    Article  CAS  Google Scholar 

  18. Viano A, Stroud R, Gibbons P, McDowell A, Conradi M, Kelton K. Hydrogenation of titanium-based quasicrystals. Phys Rev B. 1995;51:12026.

    Article  CAS  Google Scholar 

  19. Kunce I, Polanski M, Bystrzycki J. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). Int J Hydrogen Energy. 2014;39(18):9904.

    Article  CAS  Google Scholar 

  20. Tan X, Wang L, Holt CMB, Zahiri B, Eikerling MH, Mitlin D. Phys. Chem. Chem. Phys. Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity. Phys Chem Chem Phys. 2012;14:10904.

  21. Liu H, Zhang L, Ma H, Lu C, Luo H, Wang X, Huang X, Lan Z, Guo J. Aluminum hydride for solid-state hydrogen storage: structure, synthesis, thermodynamics, kinetics, and regeneration. J Energy Chem. 2021;52:428.

    Article  Google Scholar 

  22. El-Eskandarany MS. Recent developments in the fabrication, characterization and implementation of MgH2-based solid-hydrogen materials in the Kuwait Institute for Scientific Research. RSC Adv. 2019;9:9907.

    Article  CAS  Google Scholar 

  23. Zhang J, Yan S, Qu H. Recent progress in magnesium hydride modified through catalysis and nanoconfinement. Int J Hydrogen Energy. 2017;43(3):1545.

    Article  CAS  Google Scholar 

  24. Zhang XL, Liu YF, Zhang X, Hu JJ. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater. Today Nano. 2020;9:100064.

  25. Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy. 2007;32:1121.

    Article  CAS  Google Scholar 

  26. Wang H, Lin HJ, Cai WT, Ouyang LZ, Zhu M. Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems—a review of recent progress. J Alloys Compd. 2016;658:280.

    Article  CAS  Google Scholar 

  27. He T, Pachfule P, Wu H, Xu Q, Chen P. Hydrogen carriers. Nat Rev Mater. 2016;1:16059.

    Article  CAS  Google Scholar 

  28. Zhao Q, Li Y, Song Y, Cui X, Sun D, Fang F. Fast hydrogen-induced optical and electrical transitions of Mg and Mg-Ni films with amorphous structure. Appl Phys Lett. 2013;102:161901.

  29. Turnbull D. Metastable structures in metallurgy. Metall Mater Trans B. 1981;12:217.

    Article  Google Scholar 

  30. Huot J, Ravnsbæk DB, Zhang J, Cuevas F, Latroche M, Jensen TR. Mechanochemical synthesis of hydrogen storage materials. Prog Mater Sci. 2013;58:30.

    Article  CAS  Google Scholar 

  31. Orimo S, Ikeda K, Fujii H, Fujikawa Y, Kitano Y, Yamamoto K. Structural and hydriding properties of the Mg–Ni–H system with nano- and/or amorphous structures. Acta Mater. 1997;45:2271.

    Article  CAS  Google Scholar 

  32. Zhong HC, Wang H, Liu JW, Sun DL, Zhu M. Altered desorption enthalpy of MgH2 by the reversible formation of Mg(In) solid solution. Scripta Mater. 2011;65:285.

    Article  CAS  Google Scholar 

  33. Zhong HC, Lin HJ, Lu XJ, Cao CJ, Chen C, Sun JJ. New mechanism and improved kinetics of hydrogen absorption and desorption of Mg(In) solid solution alloy milling with CeF3. Int J Hydrogen Energy. 2019;44(43):23996.

    Article  CAS  Google Scholar 

  34. Skripnyuk VM, Rabkin E. Mg3Cd: a model alloy for studying the destabilization of magnesium hydride. Int J Hydrogen Energy. 2012;37(14):10724.

    Article  CAS  Google Scholar 

  35. Si TZ, Zhang JB, Liu DM, Zhang QA. A new reversible Mg3Ag–H2 system for hydrogen storage. J Alloys Compd. 2013;581:246.

    Article  CAS  Google Scholar 

  36. Zaluski L, Zaluska A, Strom-Olsen JO. Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J Alloys Compd. 1995;217(2):245.

    Article  CAS  Google Scholar 

  37. Zaluski L, Zaluska A, Strom-Olsen JO. Nanocrystalline metal hydrides. J Alloys Compd. 1997;253–254:70.

    Article  Google Scholar 

  38. Zaluska A, Zaluski L, Strom-Olsen JO. Nanocrystalline magnesium for hydrogen storage. J Alloys Compd. 1999;288:217.

    Article  CAS  Google Scholar 

  39. Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd. 2001;315(1–2):237.

    Article  CAS  Google Scholar 

  40. Barkhordarian G, Klassen T, Bormann R. Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J Alloys Compd. 2004;364(1–2):242.

    Article  CAS  Google Scholar 

  41. Cui J, Wang H, Liu J, Ouyang L, Zhang Q, Sun D, Yao X, Zhu M. Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J Mater Chem A. 2013;18:5603.

    Article  CAS  Google Scholar 

  42. Lu ZY, Yu HJ, Lu X, Song MC, Wu FY, Zheng JG, Yuan ZF, Zhang LT. Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2. Rare Met. 2021;40(11):3195.

    Article  CAS  Google Scholar 

  43. Si TZ, Zhang XY, Feng JJ, Ding XL, Li YT. Enhancing hydrogen sorption in MgH2 by controlling particle size and contact of Ni catalysts. Rare Met. 2021;40(4):995.

    Article  CAS  Google Scholar 

  44. Chen HS, Miller CE. A rapid quenching technique for the preparation of thin uniform films of amorphous solids. Rev Sci Instrum. 1970;41:1237.

    Article  CAS  Google Scholar 

  45. Lin HJ, Zhang C, Wang H, Ouyang LZ, Zhu YF, Li QL, Wang WH, Zhu M. Controlling nanocrystallization and hydrogen storage property of Mg-based amorphous alloy via a gas-solid reaction. J Alloys Compd. 2016;685:272.

    Article  CAS  Google Scholar 

  46. Lin HJ, Tang JJ, Yu Q, Wang H, Ouyang LZ, Zhao YJ, Liu JW, Wang WH, Zhu M. Symbiotic CeH2.73/CeO2 catalyst: a novel hydrogen pump. Nano Energy. 2014;9:80.

  47. Zhang QA, Zhang LX, Wang QQ. Crystallization behavior and hydrogen storage kinetics of amorphous Mg11Y2Ni2 alloy. J Alloys Compd. 2013;551:376.

    Article  CAS  Google Scholar 

  48. Révész Á, Gajdics M. Improved H-storage performance of novel Mg-based nanocomposites prepared by high-energy ball milling: a review. Energies. 2021;14(19):6400.

    Article  CAS  Google Scholar 

  49. Lass EA. Hydrogen storage in rapidly solidified and crystallized Mg–Ni–(Y, La)–Pd alloys. Int J Hydrogen Energy. 2012;37(12):9716.

    Article  CAS  Google Scholar 

  50. Denys RV, Poletaev AA, Maehlen JP, Solberg JK, Tarasov BP, Yartys VA. Nanostructured rapidly solidified LaMg11Ni alloy. II. In situ synchrotron X-ray diffraction studies of hydrogen absorption–desorption behaviours. Int J Hydrogen Energy. 2012;37(7):5710.

  51. Zhang QA, Liu DD, Wang QQ, F Fang F, Sun DL, Ouyang LZ, Zhu M. Superior hydrogen storage kinetics of Mg12YNi alloy with a long-period stacking ordered phase. Scripta Mater. 2011;65(3):233.

  52. Lass EA. Hydrogen storage measurements in novel Mg-based nanostructured alloys produced via rapid solidification and devitrification. Int J Hydrogen Energy. 2011;36(17):10787.

    Article  CAS  Google Scholar 

  53. Denys RV, Poletaev AA, Solberg JK, Tarasov BP, Yartys VA. LaMg11 with a giant unit cell synthesized by hydrogen metallurgy: crystal structure and hydrogenation behavior. Acta Mater. 2010;58(7):2510.

    Article  CAS  Google Scholar 

  54. Spassov T, Lyubenova L, Köster U, Baró MD. Mg–Ni–RE nanocrystalline alloys for hydrogen storage. Mat Sci Eng A. 2004;375–377:794.

    Article  CAS  Google Scholar 

  55. Spassov T, Solsona P, Suriñach S, Baró MD. Nanocrystallization in Mg83Ni17−xYx (x = 0, 7.5) amorphous alloys. J Alloys Compd. 2002;345(1–2):123.

  56. Spassov T, Köster U. Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy. J Alloys Compd. 1998;279(2):279.

    Article  CAS  Google Scholar 

  57. Stroud RM, Viano AM, Gibbons PC, Kelton KF, Misture ST. Stable Ti-based quasicrystal offers prospect for improved hydrogen storage. Appl Phys Lett. 1996;69(20):2998.

    Article  CAS  Google Scholar 

  58. Hu W, Wang J, Wang L, Wu Y, Wang L. Electrochemical hydrogen storage in (Ti1−xVx)2Ni (x=0.05–0.3) alloys comprising icosahedral quasicrystalline phase. Electrochim Acta. 2009;54:2770.

  59. Hu W, Niu XD, Watada M, Kawabe Y, Wu YM, Wang LD, Wang LM. Electrochemical hydrogen storage in Ti1.6V0.4Ni1−xCox icosahedral quasicrystalline alloys. ChemPhysChem. 2010;11(1):295.

  60. Badding JV, Parker LJ, Nesting DC. High pressure synthesis of metastable materials. J Solid State Chem. 1995;117(2):229.

    Article  CAS  Google Scholar 

  61. Vajeeston P, Ravindran P, Kjekshus A, Fjellvåg H. Pressure-induced structural transitions in MgH2. Phys Rev Lett. 2002;89(17–21):175506.

  62. Kyoi D, Sato T, Rönnebro E, Kitamura N, Ueda A, Ito M, Katsuyama S, Hara S, Noréus D, Sakai T. A new ternary magnesium–titanium hydride Mg7TiHx with hydrogen desorption properties better than both binary magnesium and titanium hydrides. J Alloys Compd. 2004;372(1–2):213.

    Article  CAS  Google Scholar 

  63. Kyoi D, Sato T, Rönnebro E, Tsuji Y, Kitamura N, Ueda A, Ito M, Katsuyama S, Hara S, Noréus D, Sakai T. A novel magnesium–vanadium hydride synthesized by a gigapascal-high-pressure technique. J Alloys Compd. 2004;375(1–2):253.

    Article  CAS  Google Scholar 

  64. Kyoi D, Kitamura N, Tanaka H, Ueda A, Tanase S, Sakai T. Hydrogen desorption properties of FCC super-lattice hydride Mg7NbHx prepared by ultra-high pressure techniques. J Alloys Compd. 2007;428(1–2):268.

    Article  CAS  Google Scholar 

  65. Kyoi D, Sakai T, Kitamura N, Ueda A, Tanase S. Synthesis of FCC Mg–Zr and Mg–Hf hydrides using GPa hydrogen pressure method and their hydrogen-desorption properties. J Alloys Compd. 2008;463(1–2):311.

    Article  CAS  Google Scholar 

  66. Kyoi D, Sakai T, Kitamura N, Ueda A, Tanase S. Synthesis of FCC Mg–Ta hydrides using GPa hydrogen pressure method and their hydrogen-desorption properties. J Alloys Compd. 2008;463(1–2):306.

    Article  CAS  Google Scholar 

  67. Kamegawa A, Goto Y, Kakuta H, Takamura H, Okada M. High-pressure synthesis of novel hydrides in Mg–RE–H systems (RE = Y, La, Ce, Pr, Sm, Gd, Tb, Dy). J Alloy Compd. 2006;408–412:284.

    Article  CAS  Google Scholar 

  68. Selvam P, Yvon K. Synthesis of Mg2FeH6, Mg2CoH5 and Mg2NiH4 by high-pressure sintering of the elements. Int J Hydrogen Energy. 1991;16(9):615.

    Article  CAS  Google Scholar 

  69. Valiev R, Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater. 2004;3:511.

    Article  CAS  Google Scholar 

  70. Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45(2):103.

    Article  CAS  Google Scholar 

  71. Skripnyuk VM, Rabkin E, Estrin Y. Lapovok R, Acta Mater. The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt% Zn–0.71 wt% Zr (ZK60) alloy. Acta Mater. 2004:52(2)405.

  72. Edalati K, Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A. 2016;652:325.

    Article  CAS  Google Scholar 

  73. Edalati K, Emami H, Staykov A, Smith DJ, Akiba E, Horita Z. Formation of metastable phases in magnesium–titanium system by high-pressure torsion and their hydrogen storage performance. Acta Mater. 2015;99:150.

    Article  CAS  Google Scholar 

  74. Révész Á, Kis-Tóth Á, Varga LK, Schafler E, Bakonyi I, Spassov T. Hydrogen storage of melt-spun amorphous Mg65Ni20Cu5Y10 alloy deformed by high-pressure torsion. Int J Hydrogen Energy. 2012;37(7):5769.

    Article  CAS  Google Scholar 

  75. Cantor B, Cahn RW. Metastable alloy phases by co-sputtering. Acta Metall Sin. 1976;24:845.

    Article  CAS  Google Scholar 

  76. Mooij LPA, Baldi A, Boelsma C, Shen K, Wagemaker M, Pivak Y, Schreuders H, Griessen R, Dam B. Interface energy controlled thermodynamics of nanoscale metal hydrides. Adv Energy Mater. 2011;1:754.

    Article  CAS  Google Scholar 

  77. Chung CJ, Lee SC, Groves JR, Brower EN, Sinclair R, Clemens BM. Interfacial alloy hydride destabilization in Mg/Pd thin films. Phys Rev Lett, 2012;108:106102.

  78. Bannenberg LJ, Boelsma C, Asano K, Schreuders H, Dam B. Metal hydride based optical hydrogen sensors. J Phys Soc Japan. 2020;89:051003.

  79. Baldi A, Gonzalez-Silveira M, Palmisano V, Dam B, Griessen R. Destabilization of the Mg–H system through elastic constraints. Phys Rev Lett. 2009;102:226102.

  80. Qu JL, Sun B, Zheng J, Yang R, Wang YT, Li XG. Hydrogen desorption properties of Mg thin films at room temperature. Power Sources. 2010;195:1190.

    Article  CAS  Google Scholar 

  81. Zhang LT, Yan NH, Yao ZD, Sun Z, Lu X, Nyahuma FM, Zhu RH, Tu GP, Chen LX. Remarkably improved hydrogen storage properties of carbon layers covered nanocrystalline Mg with certain air stability. Int J Hydrogen Energy. 2020;45:28134.

    Article  CAS  Google Scholar 

  82. Yan NH, Lu X, Lu ZY, Yu HJ, Wu FY , Zheng JG, Wang XZ, Zhang LT. Enhanced hydrogen storage properties of Mg by the synergistic effect of grain refinement and NiTiO3 nanoparticles. J Magnes Alloy. https://doi.org/10.1016/j.jma.2021.03.014.

  83. Shao HY, Xu HR, Wang YT, Li XG. Preparation and hydrogen storage properties of Mg2Ni intermetallic nanoparticles. Nanotechnology. 2004;15:269.

    Article  CAS  Google Scholar 

  84. Vermeulen P, Niessen RAH, Borsa DM, Dam B, Griessen R, Notten PHL. Effect of the deposition technique on the metallurgy and hydrogen storage characteristics of metastable MgyTi1−y thin films. Solid-State Lett. 2006;9(11): A520.

  85. Shen CQ, Aguey-Zinsou KF. Can γ-MgH2 improve the hydrogen storage properties of magnesium? J Mater Chem A. 2017;18:644.

    Google Scholar 

  86. Xiao XZ, Liu Z, Saremi-Yarahmadi S, Gregory DH. Facile preparation of β-/γ-MgH2 nanocomposites under mild conditions and pathways to rapid dehydrogenation. Phys chem chem phys. 2016;18:10492.

    Article  CAS  Google Scholar 

  87. Klement W, Willens RH, Duwez POL. Non-crystalline structure in solidified gold-silicon alloys. Nature. 1960;187:869.

    Article  CAS  Google Scholar 

  88. Inoue A, Ohtera K, Kita K, Masumoto T. New amorphous Mg–Ce–Ni alloys with high strength and good ductility. Jap J Appl Phys. 1988;27:L2248.

    Article  CAS  Google Scholar 

  89. Inoue A, Ohtera K, Kohinata M, Tsai AP, T. Masumoto. Glass transition behavior of Al- and Mg-based amorphous alloys. J Non-Crystalline Solids. 1990;117–118:712.

  90. Spassov T, Köster U. Hydrogenation of amorphous and nanocrystalline Mg-based alloys. J Alloy Compd. 1999;287:243.

    Article  CAS  Google Scholar 

  91. Tanaka K, Kanda Y, Furuhashi M, Saito K, Kuroda K, Saka H. Improvement of hydrogen storage properties of melt-spun Mg–Ni–RE alloys by nanocrystallization. J Alloy Compd. 1999;293–295:521.

    Article  Google Scholar 

  92. Wu Y, Solberg JK, Yartys VA. The effect of solidification rate on microstructural evolution of a melt-spun Mg–20Ni–8Mm hydrogen storage alloy. J Alloy Compd. 2007;446–447:178.

    Article  CAS  Google Scholar 

  93. Wu Y, Han W, Zhou SX, Lototsky MV, Solberg JK, Yartys VA. Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg–10Ni–2Mm alloys. J Alloy Compd. 2008;466:176.

    Article  CAS  Google Scholar 

  94. Teresiak A, Uhlemann M, Gebert A, Thomas J, Eckert J, Schultz L. Formation of nanostructured LaMg2Ni by rapid quenching and intensive milling and its hydrogen reactivity. J Alloy Compd. 2009;481:144.

    Article  CAS  Google Scholar 

  95. Kalinichenka S, Rontzsch L, Baehtz C, Kieback B. Hydrogen desorption kinetics of melt-spun and hydrogenated Mg90Ni10 and Mg80Ni10Y10 using in situ synchrotron, X-ray diffraction and thermogravimetry. J Alloy Compd. 2010;496:608.

    Article  CAS  Google Scholar 

  96. Kalinichenka S, Rontzsch L, Baehtz C, Weißgärber T, Kieback B. Hydrogen desorption properties of melt-spun and hydrogenated Mg-based alloys using in situ synchrotron X-ray diffraction and TGA. J Alloy Compd. 2011;509:S629.

    Article  CAS  Google Scholar 

  97. Kalinichenka S, Rontzsch L, Kieback B. Structural and hydrogen storage properties of melt-spun Mg–Ni–Y alloys. Int J Hydrogen Energy. 2009;34:7749.

    Article  CAS  Google Scholar 

  98. Zhang YH, Li BW, Ren HP, Guo SH, Wu ZW, Wang XL. An investigation on the hydrogen storage characteristics of the melt-spun nanocrystalline and amorphous Mg20−xLaxNi10 (x = 0, 2) hydrogen storage alloys. Mater Chem Phys. 2009;115:328.

    Article  CAS  Google Scholar 

  99. Lin HJ, Ouyang LZ, Wang H, Zhao DQ, Wang WH, Sun DL, Zhu M. Hydrogen storage properties of Mg–Ce–Ni nanocomposite induced from amorphous precursor with the highest Mg content. Int J Hydrogen Energy. 2012;37:14329.

    Article  CAS  Google Scholar 

  100. Kalinichenka S, Röntzsch L, Riedl T, Gemming T, Weißgärber T, Kieback B. Microstructure and hydrogen storage properties of melt-spun Mg–Cu–Ni–Y alloys. Int J Hydrogen Energy. 2011;36:1592.

  101. Zhang QA, Jiang CJ, Liu DD. Comparative investigations on the hydrogenation characteristics and hydrogen storage kinetics of melt-spun Mg10NiR (R = La, Nd and Sm) alloys. Int J Hydrogen Energy. 2012;37:10709.

    Article  CAS  Google Scholar 

  102. Wu Y, Lototsky MV, Solberg JK, Yartys VA, Han W, Zhou SX. Microstructure and novel hydrogen storage properties of melt-spun Mg–Ni–Mm alloys. J Alloys Compd. 2009;477:262.

    Article  CAS  Google Scholar 

  103. Lin HJ, He LQ, Zhang P, Zhang ZG, Pan SP, Li W. Tailoring hydrogen storage properties of amorphous Mg65Cu25Y10 alloy via minor alloying addition of Ag. Intermetallics. 2018;97:22.

    Article  CAS  Google Scholar 

  104. Lin HJ, Xu C, Gao M, Ma ZL, Meng YY, Li LQ, Hu XH, Zhu YF, Pan SP, Li W. Hydrogenation properties of five-component Mg60Ce10Ni20Cu5X5 (X = Co, Zn) metallic glasses. Intermetallics. 2019;108:94.

    Article  CAS  Google Scholar 

  105. Ismail N, Uhlemann M, Gebert A, Eckert J. Hydrogenation and its effect on the crystallisation behaviour of Zr55Cu30Al10Ni5 metallic glass. J Alloys Compd. 2000;298:146.

    Article  CAS  Google Scholar 

  106. Révész Á, Kis-Tóth Á, Varga LK, Lábár JL, Spassov T. High glass forming ability correlated with microstructure and hydrogen storage properties of a Mg–Cu–Ag–Y glass. Int J Hydrogen Energy. 2014;39:9230.

    Article  CAS  Google Scholar 

  107. Jing J, Krämer A, Birringer R, Gleiter H, Gonser U. Modified atomic structure in a Pd70Fe3Si27 nanoglass: a Mössbauer study. J Non-Crystalline Solids. 1989;113:167.

    Article  CAS  Google Scholar 

  108. Wang CM, Wang D, Mu XK, Goel S, Feng T, Ivanisenko Y, Hahn H, Gleiter H. Surface segregation of primary glassy nanoparticles of Fe90Sc10 nanoglass. Mater Lett. 2016;181:248.

    Article  CAS  Google Scholar 

  109. Fang JX, Vainio U, Puff W, Würschum R, Wang XL, Wang D, Ghafari M, Jiang F, Sun J, Hahn H, Gleiter H. Atomic structure and structural stability of Sc75Fe25 Nanoglasses. Nano Lett. 2012;12:458.

    Article  CAS  Google Scholar 

  110. Gleiter H. Nanoglasses: a new kind of noncrystalline materials. Beilstein J Nanotech. 2013;4:517.

    Article  CAS  Google Scholar 

  111. Wang JQ, Chen N, Liu P, Wang Z, Louzguine-Luzgin DV, Chen MW, Perepezko JH. The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater. 2014;79:30.

    Article  CAS  Google Scholar 

  112. Chen N, Wang D, Feng T, Kruk R, Yao KF, Louzguine-Luzgin DV, Hahn H, Gleiter H. A nanoglass alloying immiscible Fe and Cu at the nanoscale. Nanoscale. 2015;7:6607.

    Article  CAS  Google Scholar 

  113. Xu C, Lin H, Edalati K, Li W, Li L, Zhu Y. Superior hydrogenation properties in a Mg65Ce10Ni20Cu5 nanoglass processed by melt-spinning followed by high-pressure torsion. Scr Mater. 2018;152:137.

    Article  CAS  Google Scholar 

  114. Lee SH, Choi SB, E. Eisuke I, Kim JY. Structural stability and kinetics of hydrogen in TiZrNi quasicrystals. J Nanosci Nanotechno. 2010;10:7680.

  115. Lee SH, Jo YS, Kim JY. Hydrogen absorption and structural analysis of TiZrNiV quasicrystals. J Nanosci Nanotechno. 2014;14:9373.

    Article  CAS  Google Scholar 

  116. Jo YS, Lee SH, Shin HS, Kim JY. Analysis of structure and P–C–T curve of hydrogenated Ti53Zr27−xNi20Pdx quasicrystals. J Nanosci Nanotechno. 2013;13:7959.

    Article  CAS  Google Scholar 

  117. Balcerzak M. Hydrogenation study of nanostructured Ti–Zr–Ni alloys. J Energy Storage. 2016;8:6.

    Article  Google Scholar 

  118. Huang H, Meng DQ, Lai XC, Liu TW, Long Y, Hu QM. Structure of bergman-type W–TiZrNi approximants to quasicrystal, analyzed by lattice inversion method. J Phys: Condens. Mat. 2014;26:315003.

  119. Luo XL, Grant DM, Walker GS. Hydrogen storage properties for Mg–Zn–Y quasicrystal and ternary alloys. J Alloys Compd. 2015;645:S23.

    Article  CAS  Google Scholar 

  120. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299.

    Article  CAS  Google Scholar 

  121. Qin YC, Wang FQ, Wang XM, Wang MW, Zhang WL, An WK, Wang XP, Ren YL, Zheng X, Lv DC. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Met. 2021;40(9):2354.

  122. Sahlberg M, Karlsson D, Zlotea C, Jansson U. Superior hydrogen storage in high entropy alloys. Sci Rep. 2016;6:36770.

    Article  CAS  Google Scholar 

  123. Zlotea C, Sow MA, Ek G, Couzinié JP, Perrière L, Guillot I, Bourgon J, Møller KT, Jensen TR, Akiba E, Sahlberg M. Hydrogen sorption in TiZrNbHfTa high entropy alloy. J Alloys Compd. 2019;775:667.

    Article  CAS  Google Scholar 

  124. de Marco MO, Li Y, Li HW, Edalati K, Floriano R. Mechanical synthesis and hydrogen storage characterization of MgVCr and MgVTiCrFe high-entropy alloy. Adv Eng Mater. 2020;22(2):1901079.

    Article  CAS  Google Scholar 

  125. Edalati P, Floriano R, Mohammadi A, Li Y, Zepon G, Li HW, Edalati K. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scripta Mater. 2020;178: 387.

  126. Zhang C, Song A, Yuan Y, Wu Y, Zhang P, Lu Z, Song X. Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy. Int J Hydrogen Energy. 2020;45(8):5367.

    Article  CAS  Google Scholar 

  127. Cardoso KR, Roche V, Jorge Jr AM, Antiqueira FJ, Zepon G, Champion Y. Hydrogen storage in MgAlTiFeNi high entropy alloy. J Alloys Compd. 2021;858 :158357.

  128. Karlsson D, Ek G, Cedervall J, Zlotea C, MØller KT, Hansen TC, Bednarčík, Paskevicius M, SØrby MH, Jensen TR, Jansson U, Sahlberg M. Structure and hydrogenation properties of a HfNbTiVZr high-entropy alloy. Inorg. Chem. 2018;57(4): 2103.

  129. Dong H, Huang C, Moser D, Noréus D, Zhu M. Structure and stability of high pressure synthesized MgTM2H6 (TM = Zr, Nb) hydrides. Acta Mater. 2015;96:237.

    Article  CAS  Google Scholar 

  130. Shao H, Asano K, Enoki H, Akiba E. Fabrication hydrogen storage properties and mechanistic study of nanostructured Mg50Co50 body-centered cubic alloy. Scripta Mater. 2009;60(9):818.

    Article  CAS  Google Scholar 

  131. Zhang Y, Tsushio Y, Enoki H, Akiba E. The study on binary Mg–Co hydrogen storage alloys with BCC phase. J Alloys Compd. 2005;393(1–2):147.

    Article  CAS  Google Scholar 

  132. Edalati K, Emami H, Ikeda Y, Iwaoka H, Tanaka I, Akiba E, Horita Z. New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium–zirconium system produced by high-pressure torsion. Acta Mater. 2016;108:293.

    Article  CAS  Google Scholar 

  133. Gómez EIL, Edalati K, Coimbrão DD, Antiqueira FJ, Zepon G, Cubero-Sesin JM, Botta WJ. FCC phase formation in immiscible Mg–Hf (magnesium–hafnium) system by high-pressure torsion. AIP Advances. 2020;10:055222.

  134. Anastasopol A, Pfeiffer TV, Middelkoop J, Lafont U, Canales-Perez RJ, Schmidt-Ott A, Mulder FM, Eijt SWH. Reduced enthalpy of metal hydride formation for Mg–Ti nanocomposites produced by spark discharge generation. J Am Chem Soc. 2013;135(21):7891.

    Article  CAS  Google Scholar 

  135. Calizzi M, Venturi F, Ponthieu M, Cuevas F, Morandi V, Perkisas T, Bals S, Pasquini L. Gas-phase synthesis of Mg–Ti nanoparticles for solid-state hydrogen storage. Phys Chem Chem Phys. 2016;18:141.

    Article  CAS  Google Scholar 

  136. Lu Y, Kim H, Sakaki K, Hayashi S, Jimura K, Asano K. Destabilizing the dehydrogenation thermodynamics of magnesium hydride by utilizing the immiscibility of Mn with Mg. Inorg Chem. 2019;58(21):14600.

    Article  CAS  Google Scholar 

  137. Lu Y. Kim H, Jimura K, Hayashi S, Sakaki K, Asano K.Strategy of thermodynamic and kinetic improvements for Mg hydride nanostructured by immiscible transition metals. J Power Sources. 2021;494:229742.

  138. Ding X, Li Y, Fang F, Sun D, Zhang Q. Hydrogen-induced magnesium–zirconium interfacial coupling: enabling fast hydrogen sorption at lower temperatures. J Mater Chem A. 2017;5:5067.

    Article  CAS  Google Scholar 

  139. Asano K, Westerwaal RJ, Anastasopol A, Mooij LPA, Boelsma C, Ngene P, Schreuders H, Eijt SWH, Dam B. Destabilization of Mg hydride by self-organized nanoclusters in the immiscible Mg–Ti system. J Phys Chem C. 2015;119(22):12157.

    Article  CAS  Google Scholar 

  140. Asano K, Westerwaal RJ, Schreuders H, Dam B. Enhancement of destabilization and reactivity of Mg hydride embedded in immiscible Ti matrix by addition of Cr: Pd-free destabilized Mg hydride. J Phys Chem C. 2017;121(23):12631.

    Article  CAS  Google Scholar 

  141. Vermeulen P, Niessen RAH, Notten PHL. Hydrogen storage in metastable MgyTi(1−y) thin films. Electrochem Commun. 2006;8(1):27.

    Article  CAS  Google Scholar 

  142. Lu Y, Asano K, Schreuders H, Kim H, Sakaki K, Machida A, Watanuki T, Dam B. Nanostructural perspective for destabilization of Mg hydride using the immiscible transition metal Mn. Inorg Chem. 2021;60(19):15024.

    Article  CAS  Google Scholar 

  143. Zheng S, Wang K, Oleshko VP, Bendersky LA. Mg–Fe thin films: a phase-separated structure with fast kinetics of hydrogenation. J Phys Chem C. 2012;116(40):21277.

    Article  CAS  Google Scholar 

  144. Ngene P, Longo A, Mooij L, Bras W, Dam B. Metal-hydrogen systems with an exceptionally large and tunable thermodynamic destabilization. Nat Commun. 2017;8:1846.

    Article  CAS  Google Scholar 

  145. Graetz J. Metastable metal hydrides for hydrogen storage. ISRN Mater Sci. 2012; 2012:863025.

  146. Yu M, Zhu Z, Li HP, Yan QL. Advanced preparation and processing techniques for high energy fuel AlH3. Chem Eng J. 2021;421(1):129753.

  147. Graetz J, Reilly JJ, Yartys VA, Maehlen JP, Bulychev BM, Antonov VE, Tarasov BP, Gabis IE. Aluminum hydride as a hydrogen and energy storage material: past, present and future. J Alloys Compd. 2011;509(2):S517.

    Article  CAS  Google Scholar 

  148. Finholt AE, Bond AC, Schlesinger HI. Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry. J Am Chem Soc. 1947;69(5):1199.

    Article  CAS  Google Scholar 

  149. Sandrock G, Reilly J, Graetz J, Zhou WM, Johnson J, Wegrzyn J. Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles. Appl Phys A. 2005;80:687.

    Article  CAS  Google Scholar 

  150. Brower FM, Matzek NE, Reigler PF, Rinn HW, Roberts CB, Schmidt DL, Snover JA, Terada K. Preparation and properties of aluminum hydride. J Am Chem Soc. 1976;98:2450.

    Article  CAS  Google Scholar 

  151. Bulychev BM, Verbetskii VN, Sizov AI, Zvukova TM, Genchel VK, Fokin VN. Non-solvated aluminum hydride. Crystallization from diethyl ether-benzene solutions. Russ Chem Bull. 2007: 56:1305.

  152. Turley JW, Rinn HW. Crystal structure of aluminum hydride. Inorg Chem. 1969;8(1):18.

    Article  CAS  Google Scholar 

  153. Brinks HW, Istad-Lem A, Hauback BC. Mechanochemical synthesis and crystal structure of α’-AlD3 and α-AlD3. J Phys Chem B. 2006;110:25833.

    Article  CAS  Google Scholar 

  154. Brinks HW, Langley W, Jensen CM, Graetz J, Reilly JJ, Hauback BC. Synthesis and crystal structure of β-AlD3. J Alloys Compd. 2007;433(1–2):180.

    Article  CAS  Google Scholar 

  155. Yartys VA, Denys RV, Maehlen JP, Frommen C, Fichtner M, Bulychev BM, Emerich H. Double-bridge bonding of aluminium and hydrogen in the crystal structure of γ-AlH3. Inorg Chem. 2007;46:1051.

    Article  CAS  Google Scholar 

  156. Wang L, Rawal A, Quadir MZ, Aguey-Zinsou KF. Formation of aluminium hydride (AlH3) via the decomposition of organoaluminium and hydrogen storage properties. Int J Hydrogen Energy. 2018;43(34):16749.

    Article  CAS  Google Scholar 

  157. Liu H, Wang X, Dong Z, Cao G, Liu Y, Chen L, Yan M. Dehydriding properties of γ-AlH3. Int J Hydrogen Energy. 2013;38(25):10851.

    Article  CAS  Google Scholar 

  158. Sandrock G, Reilly J, Graetz J. Zhou WM, Johnson J, Wegrzyn J, Alkali metal hydride doping of α-AlH3 for enhanced H2 desorption kinetics - ScienceDirec. J Alloys Compd. 2006;421(1–2):185

  159. Nakagawa Y, Lee CH, Matsui K, Kousaka K, Isobe S, Hashimoto N. Doping effect of Nb species on hydrogen desorption properties of AlH3. J Alloys Compd. 2018;734:55.

    Article  CAS  Google Scholar 

  160. Luo Y, Wang Q, Li J, Xu F, Sun L, Zou Y, Chu H, Li B, Zhang K. Enhanced hydrogen storage/sensing of metal hydrides by nano-modification. Mater Today Nano. 2020;9:100071.

  161. Wang L, Rawal A, Aguey-Zinsou KF. Hydrogen storage properties of nanoconfined aluminium hydride (AlH3). Chem Eng Sci. 2019;194:64.

    Article  CAS  Google Scholar 

  162. Chen T, Liu H, Xu L, Li S, Ge H, Wang X. Effects of Nb-based additives on hydrogen desorption properties of AlH3. J Mater Sci Eng. 2017;35:9.

    CAS  Google Scholar 

  163. Paskevicius M, Sheppard DA, Buckley CE. Characterisation of mechanochemically synthesised alane (AlH3) nanoparticles. J Alloys Compd. 2009;487(1–2):370.

    Article  CAS  Google Scholar 

  164. Hlova IZ, Gupta S, Goldston JF, Kobayashi T, Pruski M, Pecharsky VK. Dry mechanochemical synthesis of alane from LiH and AlCl3. Faraday Discuss. 2014;170:137.

    Article  CAS  Google Scholar 

  165. Zidan R, Garcia-Diaz BL, Fewox CS, Stowe AC, Gray JR, Harter AG. Aluminium hydride: a reversible material for hydrogen storage. Chem Commun. 2009;40(25):3717.

    Article  CAS  Google Scholar 

  166. Crouch-Baker S. Use of fluidized-bed electrode reactors for alane production. U.S. Patent. 2016–1–5: 9,228,267.

  167. Graetz J, Chaudhuri S, Wegrzyn J, Celebi Y, Johnson JR, Zhou W, Reilly JJ. Direct and reversible synthesis of AlH3−triethylenediamine from Al and H2. J Phys Chem C. 2007;111(51):19148.

    Article  CAS  Google Scholar 

  168. Lacina D, Wegrzyn J, Reilly J. Regeneration of aluminium hydride using dimethylethylamine. Energy Environ Sci. 2010;3(8):1099.

    Article  CAS  Google Scholar 

  169. Ahluwalia RK, Hua TQ, Peng JK. Automotive storage of hydrogen in alane. Int J Hydrogen Energy. 2009;34(18):7731.

    Article  CAS  Google Scholar 

  170. Grew KN, Brownlee ZB, Shukla KC. Assessment of alane as a hydrogen storage media for portable fuel cell power source. J Power Sources. 2012;217:417.

    Article  CAS  Google Scholar 

  171. Thampan T, Atwater T, Cook C. Hydrogen generation from aluminum hydride for wearable polymer electrolyte membrane fuel cells. Int J Hydrogen Energy. 2016;41(22):9402.

    Article  CAS  Google Scholar 

  172. Thampan T, Shah D, Cook C. Development and evaluation of portable and wearable fuel cells for soldier use. J Power Sources. 2014;259:276.

    Article  CAS  Google Scholar 

  173. Bogdanovic B, Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd. 1997;253:1.

    Article  Google Scholar 

  174. Fichtner M, Fuhr O. Synthesis and structures of magnesium alanate and two solvent adducts. J Alloys Compd. 2002;345(1–2):286.

    Article  CAS  Google Scholar 

  175. Løvvik OM, Opalka SM, Brinks HW. Crystal structure and thermodynamic stability of the lithium alanates LiAlH4 and Li3AlH6. Phys Rev B, 2004;69:134117.

  176. Mamatha A, Bogdanovic B, Felderhoff M, Pommerin A, Schmidt W, Schuth F, Weidenthaler C. Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium–magnesium alanates. J Alloys Compd. 2006;407(1–2):78.

    Article  CAS  Google Scholar 

  177. Orimo SI, Nakamori Y, Eliseo JR, Zuttel A, Jensen CM. Complex hydrides for hydrogen storage. Chem Rev. 2007;107(10):4111.

    Article  CAS  Google Scholar 

  178. auback BC, Brinks HW, Fjellvg HJ. Accurate structure of LiAlD4 studied by combined powder neutron and X-ray diffraction. J Alloys Compd. 2002;346(1–2):184.

  179. Fossdal A, Brinks HW, Fichtner M, Hauback BC. Determination of the crystal structure of Mg(AlH4)2 by combined X-ray and neutron diffraction. J Alloys Compd. 2005;387(1–2):47.

    Article  CAS  Google Scholar 

  180. Løvvik OM, Crystal structure of Ca(AlH4)2 predicted from density-functional band-structure calculations. Phys Rev B. 2005;71:144111.

  181. Komiya K, Morisaku N, Shinzato Y. Synthesis and dehydrogenation of M(AlH4)2 (M = Mg, Ca). J Alloys Compd. 2007;446–447:237.

    Article  CAS  Google Scholar 

  182. Kabbour H, Ahn CC, Hwang SJ, Bowman RC, Graetz J. Direct synthesis and NMR characterization of calcium alanate. J Alloys Compd. 2007;446–447:264.

    Article  CAS  Google Scholar 

  183. Andreasen A. Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride. J Alloys Compd. 2006;419(1–2):40.

    Article  CAS  Google Scholar 

  184. Fichtner M, Fuhr O, Kircher O. Magnesium alanate–a material for reversible hydrogen storage. J Alloys Compd. 2003;356–357:418.

    Article  CAS  Google Scholar 

  185. Fichtner M, Engel J, Fuhr O. The structure of magnesium alanate. Inorg Chem. 2003;42:7060.

    Article  CAS  Google Scholar 

  186. Wei S, Xue S, Huang C. Multielement synergetic effect of NiFe2O4 and h-BN for improving the dehydrogenation properties of LiAlH4. Inorg Chem Front. 2021;8:3111.

    Article  CAS  Google Scholar 

  187. Zhao L, Xu F, Zhang C, Wang Z, Ju H, Gao X, Zhang X, Sun L, Liu Z. Enhanced hydrogen storage of alanates: recent progress and future perspectives. Prog Nat Sci Mater Int. 2021;31(2):165.

  188. Ismail M, Sazelee NA, Ali NA. Catalytic effect of SrTiO3 on the dehydrogenation properties of LiAlH4. J. Alloys. Compd. 2021;855:157475.

  189. Hao CA, Jz A, Xxa C. Ultra-fast dehydrogenation behavior at low temperature of LiAlH4 modified by fluorographite. Int J Hydrogen Energy. 2020;45(52):28123.

    Article  CAS  Google Scholar 

  190. Ali NA, Sazelee N, Yahya MS, Ismail M. Influence of K2NbF7 catalyst on the desorption behavior of LiAlH4. Front Chem. 2020;8:457.

    Article  CAS  Google Scholar 

  191. Li ZL, Zhai FQ, Qiu HC, Wan Q, Li P, Qu XH. Dehydrogenation characteristics of ZrC-doped LiAlH4 with different mixing conditions. Rare Met. 2020;39(4):383.

    Article  CAS  Google Scholar 

  192. Xia Y, Zhang H, Sun Y. Dehybridization effect in improved dehydrogenation of LiAlH4 by doping with two-dimensional Ti3C2. Mater Today Nano, 2019;8:100054.

  193. Sulaiman NN, Ismail M, Timmiati SN. Improved hydrogen storage performances of LiAlH4 + Mg(BH4)2 composite with TiF3 addition. Int J Energy Res. 2021;45:2882.

    Article  CAS  Google Scholar 

  194. Cheng L, Xu B, Li X. The roles of native defects and transition metal additives in the dehydrogenation mechanism of Mg(AlH4)2. Int J Hydrogen Energy. 2020;45(35):17625.

    Article  CAS  Google Scholar 

  195. Wang J, Ebner AD, Ritter JA. Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4. J Am Chem Soc. 2006;128(17):5949.

    Article  CAS  Google Scholar 

  196. Graetz J, Wegrzyn J, Reilly JJ. Regeneration of lithium aluminum hydride. J Am Chem Soc. 1994;130(52):17790.

    Article  CAS  Google Scholar 

  197. Liu X, Mcgrady GS, Langmi HW. Facile cycling of Ti-doped LiAlH4 for high performance hydrogen storage. J Am Chem Soc. 2009;131(14):5032.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011985), the National Natural Science Foundation of China (Nos. 52071157, 51801078, 52001070 and 52001079), the Natural Science Foundation of Jiangsu Province (No. BK20180986), the Natural Science Foundation of Guangxi Province (No. 2019GXNSFBA185004), Guangzhou Science and Technology Association Young Talent Lifting Project (No. X20200301071) and the Open Fund of the Guangdong Provincial Key Laboratory of Advance Energy Storage Materials (No. AESM202102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liu-Ting Zhang or Hai-Zhen Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HJ., Lu, YS., Zhang, LT. et al. Recent advances in metastable alloys for hydrogen storage: a review. Rare Met. 41, 1797–1817 (2022). https://doi.org/10.1007/s12598-021-01917-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01917-8

Keywords

Navigation