Skip to main content
Log in

UV-activated single-layer WSe2 for highly sensitive NO2 detection

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

过渡金属二硫化物(TMDs)材料由于其在室温下工作的能力,在气体传感器中受到越来越多的关注。然而,低响应、高检测限和恢复迟缓等瓶颈极大地阻碍了它们在实际传感器中的应用。在这项工作中,我们提出了一种基于化学气相沉积法(CVD)生长的单层WSe2的高灵敏度NO2传感器。在紫外(UV)光激活下,该传感器显示出对NO2的显著响应,这超过了先前报道的基于单层和少层WSe2的传感器。在紫外线照射下,传感器在室温(25 ℃)下对1×10−6 NO2的响应高达9,与没有紫外线激活的传感器相比,显示出4倍的增强。该传感器在紫外光照射下,在0.5×10−6−20.0×10−6 NO2的浓度范围内表现出良好的线性响应。此外,该传感器还显示出对NO2的良好选择性、可行的重复性和稳定性(4周)以及快速响应恢复(10×10−6 NO2,53 s/90 s),为可靠的NO2传感器提供了相当大的潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5

References

  1. Liu SK, Cai S, Chen Y, Xiao B, Chen P, Xiang XD. The effect of pollutional haze on pulmonary function. J Thorac Dis. 2016;8(1):E41.

    Google Scholar 

  2. Zhang DH, Liu ZQ, Li C, Tang T, Liu XL, Han S, Lei B, Zhou CW. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004;4(10):1919.

    Article  CAS  Google Scholar 

  3. Gu D, Wang XY, Liu W, Li XG, Lin SW, Wang J, Rumyantseva MN, Gaskov AM, Akbar SA. Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sens Actuators B-Chem. 2020;305:127455.

    Article  CAS  Google Scholar 

  4. Jaiswal J, Sanger A, Tiwari P, Chandra R. MoS2 hybrid heterostructure thin film decorated with CdTe quantum dots for room temperature NO2 gas sensor. Sens Actuators B-Chem. 2020;305:127437.

    Article  CAS  Google Scholar 

  5. Phillips ML, Hall TA, Seakar K, Tomey JL. Assessment of medical personnel exposure to nitrogen oxides during inhaled nitric oxide treatment of neonatal and pedoatric patients. Pediatrics. 1999;104(5):1095.

    Article  CAS  Google Scholar 

  6. Yang XL, Zhang SF, Yu Q, Zhao LP, Sun P, Wang TS, Liu FM, Yan X, Gao Y, Liang XS, Zhang SM, Lu GY. One step synthesis of branched SnO2/ZnO heterostructures and their enhanced gas-sensing properties. Sens Actuators B-Chem. 2019;281:415.

    Article  CAS  Google Scholar 

  7. Wang Y, Liu CY, Wang Z, Song ZW, Zhou XY, Han N, Chen YF. Sputtered SnO2:NiO thin films on self-assembled Au nanoparticle arrays for MEMS compatible NO2 gas sensors. Sens Actuators B-Chem. 2019;278:28.

    Article  Google Scholar 

  8. Lou CM, Li ZS, Yang C, Liu XH, Zheng W, Zhang J. Rational design of ordered porous SnO2/ZrO2 thin films for fast and selective triethylamine detection with humidity resistance. Sens Actuators B: Chem. 2021;333:129572.

    Article  CAS  Google Scholar 

  9. Lou CM, Yang C, Zheng W, Liu XH, Zhang J. Atomic layer deposition of ZnO on SnO2 nanospheres for enhanced formaldehyde detection. Sens Actuators B: Chem. 2021;329:129218.

    Article  CAS  Google Scholar 

  10. Agarwal S, Rai P, Gatell EN, Llobet E, Guell F, Kumar M, Awasthi K. Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens Actuators B-Chem. 2019;292:24.

    Article  CAS  Google Scholar 

  11. Li Z, Zhang Y, Zhang H, Jiang Y, Yi JX. Superior NO2 sensing of MOF-derived indium-doped ZnO porous hollow cages. ACS Appl Mater Interfaces. 2020;12(33):37489.

    Article  CAS  Google Scholar 

  12. Xu YS, Zheng LL, Yang C, Zheng W, Liu XH, Zhang J. Chemiresistive sensors based on core-shell ZnO@TiO2 nanorods designed by atomic layer deposition for n-butanol detection. Sens Actuators B: Chem. 2020;310:127846.

    Article  CAS  Google Scholar 

  13. Lou CM, Huang QX, Li ZS, Lei GL, Liu XH, Zhang J. Fe2O3-sensitized SnO2 nanosheets via atomic layer deposition for sensitive formaldehyde detection. Sensors Actuators B: Chemical. 2021;345:130429.

    Article  CAS  Google Scholar 

  14. Wang ZB, Wang D, Sun JB. Controlled synthesis of defect-rich ultrathin two-dimensional WO3 nanosheets for NO2 gas detection. Sens Actuators B-Chem. 2017;245:828.

    Article  CAS  Google Scholar 

  15. Hua ZQ, Tian C, Qiu ZL, Li Y, Tian XM, Wang MJ, Li EP. An investigation on NO2 sensing mechanism and shielding behavior of WO3 nanosheets. Sens Actuators B-Chem. 2018;259:250.

    Article  CAS  Google Scholar 

  16. Lei GL, Lou CM, Liu XH, Xie JY, Li ZS, Zheng W, Zhang J. Thin films of tungsten oxide materials for advanced gas sensors. Sens Actuators B: Chem. 2021;341:129996.

    Article  CAS  Google Scholar 

  17. Zhang J, Liu XH, Neri G, Pinna N. Nanostructured materials for room-temperature gas sensors. Adv Mater. 2016;28(5):795.

    Article  CAS  Google Scholar 

  18. Joshi N, Hayasaka T, Liu YM, Liu HL, Oliveira ON, Lin LW. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta. 2018;185(4):213.

    Article  Google Scholar 

  19. Malik R, Tomer VK, Mishra YK, Lin LW. Functional gas sensing nanomaterials: a panoramic view. Appl Phys Rev. 2020;7(2):021301.

    Article  CAS  Google Scholar 

  20. Zhang DZ, Sun YE, Jiang CX, Zhang Y. Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route. Sens Actuators B-Chem. 2017;242:15.

    Article  CAS  Google Scholar 

  21. Lee E, Mohammadi AV, Prorok BC, Yoon YS, Beidaghi M, Kim DJ. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl Mater Interfs. 2017;9(42):37184.

    Article  CAS  Google Scholar 

  22. Song YG, Shim YS, Suh JM, Noh MS, Kim GS, Choi KS, Jeong B, Kim S, Jang HW, Ju BK, Kang CY. Ionic-activated chemiresistive gas sensors for room-temperature operation. Small. 2019;15(40):1902065.

    Article  Google Scholar 

  23. Azizi A, Dogan M, Long H, Cain JD, Lee K, Eskandari R, Varieschi A, Glazer EC, Cohen ML, Zettl A. High-performance atomically-thin room-temperature NO2 sensor. Nano Lett. 2020;20(8):6120.

    Article  CAS  Google Scholar 

  24. Kumar R, Liu XH, Zhang J, Kumar M. Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Letters. 2020;12(1):164.

    Article  CAS  Google Scholar 

  25. Liu JB, Hu JY, Liu C, Tan YM, Peng X, Zhang Y. Mechanically exfoliated MoS2 nanosheets decorated with SnS2 nanoparticles for high-stability gas sensors at room temperature. Rare Met. 2021;40(6):1536.

    Article  CAS  Google Scholar 

  26. Xu YS, Zheng LL, Yang C, Zheng W, Liu XH, Zhang J. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature. ACS Appl Mater Interf. 2020;12(18):20704.

    Article  CAS  Google Scholar 

  27. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7(11):699.

    Article  CAS  Google Scholar 

  28. Liu XH, Ma TT, Pinna N, Zhang J. Two-dimensional nanostructured materials for gas sensing. Adv Func Mater. 2017;27(37):1702168.

    Article  Google Scholar 

  29. Geim AK. Graphene: status and prospects. Science. 2009;324(5934):1530.

    Article  CAS  Google Scholar 

  30. Xu YS, Xie JY, Zhang YF, Tian FH, Yang C, Zheng W, Liu XH, Zhang J, Pinna N. Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature. J Hazard Mater. 2021;411:125120.

    Article  CAS  Google Scholar 

  31. Zheng W, Liu XH, Xie JY, Lu GC, Zhang J. Emerging van der Waals junctions based on TMDs materials for advanced gas sensors. Coordination Chem Rev. 2021;447:214151.

    Article  CAS  Google Scholar 

  32. Kumar R, Goel N, Kumar M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sensors. 2017;2(11):1744.

    Article  CAS  Google Scholar 

  33. Zhou Y, Gao C, Guo YC. UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet-ZnO nanowire heterojunctions at room temperature. J Mater Chem A. 2018;6(22):10286.

    Article  CAS  Google Scholar 

  34. Zeng JW, Niu Y, Gong YL, Wang Q, Li H, Umar A, de Rooij NF, Zhou GF, Wang Y. All-dry transferred ReS2 nanosheets for ultrasensitive room-temperature NO2 sensing under visible light illumination. ACS Sensors. 2020;5(10):3172.

    Article  CAS  Google Scholar 

  35. Liu W, Kang JH, Sarkar D, Khatami Y, Jena D, Banerjee K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013;13(5):1983.

    Article  CAS  Google Scholar 

  36. Zheng ZQ, Zhang TM, Yao JD, Zhang Y, Xu JR, Yang GW. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology. 2016;27(22):225501.

    Article  Google Scholar 

  37. Wang TX, Zhao RM, Zhao X, An YP, Dai XQ, Xia CX. Tunable donor and acceptor impurity states in a WSe2 monolayer by adsorption of common gas molecules. RSC Adv. 2016;6(86):82793.

    Article  CAS  Google Scholar 

  38. Ko KY, Park K, Lee S, Kim Y, Woo WJ, Kim D, Song JG, Park J, Kim H. Recovery improvement for large-area tungsten diselenide gas sensors. ACS Appl Mater Interf. 2018;10(28):23910.

    Article  CAS  Google Scholar 

  39. Wu YC, Joshi N, Zhao SL, Long H, Zhou LJ, Ma G, Peng B, Oliveira ON, Zettl A, Lin LW. NO2 gas sensors based on CVD tungsten diselenide monolayer. Appl Surf Sci. 2020;529:147110.

    Article  CAS  Google Scholar 

  40. Yang C, Xie JY, Lou CM, Zheng W, Liu XH, Zhang J. Flexible NO2 sensors based on WSe2 nanosheets with bifunctional selectivity and superior sensitivity under UV activation. Sens Actuators B-Chem. 2021;333:129571.

    Article  CAS  Google Scholar 

  41. Guo RS, Han YT, Su C, Chen XW, Zeng M, Hu NT, Su YJ, Zhou ZH, Wei H, Yang Z. Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sens Actuators B-Chem. 2019;300:127013.

    Article  CAS  Google Scholar 

  42. Zhou JD, Lin JH, Huang XW, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu HM, Lei JC, Wu D, Liu FC, Fu QD, Zeng QS, Hsu CH, Yang CL, Lu L, Yu T, Shen ZX, Lin H, Yakobson BI, Liu Q, Suenaga K, Liu GT, Liu Z. A library of atomically thin metal chalcogenides. Nature. 2018;556(7701):355.

    Article  CAS  Google Scholar 

  43. Zheng W, Yang C, Li ZS, Xie JY, Lou CM, Lei GL, Liu XH, Zhang J. Indium selenide nanosheets for photoelectrical NO2 sensor with ultra sensitivity and full recovery at room temperature. Sens Actuators B-Chem. 2021;329:129127.

    Article  CAS  Google Scholar 

  44. Huang JK, Pu J, Hsu CL, Chiu MH, Juang ZY, Chang YH, Chang WH, Iwasa Y, Takenobu T, Li LJ. Large-area synthesis of highly crystalline WSe2 mono layers and device applications. ACS Nano. 2014;8(1):923.

    Article  CAS  Google Scholar 

  45. Fang H, Chuang S, Chang TC, Takei K, Takahashi T, Javey A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012;12(7):3788.

    Article  CAS  Google Scholar 

  46. Li H, Lu G, Wang YL, Yin ZY, Cong CX, He QY, Wang L, Ding F, Yu T, Zhang H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small. 2013;9(11):1974.

    Article  CAS  Google Scholar 

  47. Zhao YY, Luo X, Li H, Zhang J, Araujo PT, Gan CK, Wu J, Zhang H, Quek SY, Dresselhaus MS, Xiong QH. Inter layer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013;13(3):1007.

    Article  CAS  Google Scholar 

  48. Luo X, Zhao YY, Zhang J, Toh ML, Kloc C, Xiong QH, Quek SY. Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2. Phys Rev B. 2013;88(19):195313.

    Article  Google Scholar 

  49. Gong YJ, Lei SD, Ye GL, Li B, He YM, Keyshar K, Zhang X, Wang QZ, Lou J, Liu Z, Vajtai R, Zhou W, Ajayan PM. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015;15(9):6135.

    Article  CAS  Google Scholar 

  50. Xu YS, Zheng W, Liu XH, Zhang LQ, Zheng LL, Yang C, Pinna N, Zhang J. Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater Horiz. 2020;7(6):1519.

    Article  CAS  Google Scholar 

  51. Li ZS, Liu XH, Zhou M, Zhang SL, Cao SZ, Lei GL, Lou CM, Zhang J. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. J Hazard Mater. 2021;415:125757.

    Article  CAS  Google Scholar 

  52. Wang YJ, Zhou Y, Xie GZ, Li J, Wang YH, Liu XY, Zang ZG. Dual resistance and impedance investigation: ultrasensitive and stable humidity detection of molybdenum disulfide nanosheet-polyethylene oxide hybrids. ACS Appl Mater Interfaces. 2021;13(21):25250.

    Article  CAS  Google Scholar 

  53. Gao ZM, Song GS, Zhang XM, Li Q, Yang S, Wang TQ, Li YN, Zhang LY, Guo L, Fu Y. A facile PDMS coating approach to room-temperature gas sensors with high humidity resistance and long-term stability. Sens Actuators B-Chem. 2020;325:128810.

    Article  CAS  Google Scholar 

  54. Wu J, Wu ZX, Ding HJ, Wei YM, Huang WX, Yang X, Li ZY, Qiu L, Wang XT. Three-dimensional graphene hydrogel decorated with SnO2 for high-performance NO2 sensing with enhanced immunity to humidity. ACS Appl Mater Interfaces. 2020;12(2):2634.

    Article  CAS  Google Scholar 

  55. Chen XQ, Hu JY, Chen P, Yin MQ, Meng FP, Zhang Y. UV-light-assisted NO2 gas sensor based on WS2/PbS heterostructures with full recoverability and reliable anti-humidity ability. Sens Actuators B-Chem. 2021;339:129902.

    Article  CAS  Google Scholar 

  56. Moumen A, Konar R, Zappa D, Teblum E, Perelshtein I, Lavi R, Ruthstein S, Nessim GD, Comini E. Robust room-temperature NO2 sensors from exfoliated 2D few-layered CVD-grown bulk tungsten Di-selenide (2H-WSe2). ACS Appl Mater Interfaces. 2021;13(3):4316.

    Article  CAS  Google Scholar 

  57. Cho B, Kim AR, Kim DJ, Chung HS, Choi SY, Kwon JD, Park SW, Kim Y, Lee BH, Lee KH, Kim DH, Nam J, Hahm MG. Two-dimensional atomic-layered alloy junctions for high performance wearable chemical sensor. ACS Appl Mater Interfaces. 2016;8(30):19635.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51972182 and 61971252), Shandong Provincial Natural Science Foundation (No. ZR2020JQ27) and the Youth Innovation Team Project of Shandong Provincial Education Department (No. 2020KJN015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Hong Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, GC., Liu, XH., Zheng, W. et al. UV-activated single-layer WSe2 for highly sensitive NO2 detection. Rare Met. 41, 1520–1528 (2022). https://doi.org/10.1007/s12598-021-01899-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01899-7

Navigation