Skip to main content
Log in

Neutron diffraction studies of permanent magnetic materials

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Neutron diffraction technology as an advanced material research technique has special advantages in studying magnetic materials compared to the conventional techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In this review, the applications of neutron diffraction technology on permanent magnetic materials were briefly reviewed: (1) the determination of the crystal structure and magnetic structure of the typical permanent magnet material, (2) in situ neutron diffraction study of the crystal structure evolution of the permanent magnets, and (3) phase transition in permanent magnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shull CG, Smart JS. Detection of antiferromagnetism by neutron diffraction. Phys Rev. 1949;76(8):1256.

    Article  Google Scholar 

  2. Shull CG, Strauser WA, Wollan EO. Neutron diffraction by paramagnetic and antiferromagnetic substances. Phys Rev. 1951;83(2):333.

    Article  CAS  Google Scholar 

  3. Herbst JF, Croat JJ, Pinkerton FE, Yelon WB. Relationships between crystal structure and magnetic properties in Nd2Fe14B. Phys Rev B. 1984;29(7):4176.

    Article  CAS  Google Scholar 

  4. Isnard O. Neutron scattering of magnetic materials. In: Liu J, Fullerton E, Gutfleisch O, Sellmyer D, editors. Nanoscale Magnetic Materials and Applications. Boston: Springer; 2009. 123.

    Chapter  Google Scholar 

  5. Yusuf SM, Kumar A. Neutron scattering of advanced magnetic materials. Appl Phys Rev. 2017;4(3):031303.

    Article  Google Scholar 

  6. Sagawa M, Fujimora S, Yamamoto H, MaIsuura Y, Hiraga K. New material for permanent magnets on a base of Nd and Fe (invited). J Appl Phys. 1984;55(6):2083.

    Article  CAS  Google Scholar 

  7. Croat JJ, Herbst JF, Lee RW, Pinkenon FE. Pr-Fe and Nd-Fe-based materials: a new class of high-performance permanent magnets (invited). J Appl Phys. 1984;55(6):2078.

    Article  CAS  Google Scholar 

  8. Herbst JF, Croat JJ, Yelon WB. Structural and magnetic properties of Nd2Fe14B (invited). J Appl Phys. 1985;57(1):4086.

    Article  CAS  Google Scholar 

  9. Coey JMD, Sun H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in ammonia. J Magn Magn Mater. 1990;87(3):L251.

    Article  CAS  Google Scholar 

  10. Yang YC, Zhang XD, Ge SL, Kong LS, Pan Q. Structural and magnetic properties of the new type of rare earth-iron-nitrogen intermetallic compounds. J Rare Earths. 1991;2:81.

    Google Scholar 

  11. Chen XX, Yang L, Hu Z, Yan WL, Quan NT, Lu S, Yu DB, Xie JJ. Structure, nitridation efficiency and magnetic properties of SmFe powders and its nitrides. Rare Met. 2017. https://doi.org/10.1007/s12598-017-0943-4.

    Article  Google Scholar 

  12. Yang YC, Zhang XD, Kong LS, Pan Q, Yang JL, Ding YF, Zhang BS, Ye CT, Jin L. Neutron diffraction study of ternary nitrides of the type R2Fe17Nx. J Appl Phys. 1991;70(10):6018.

    Article  CAS  Google Scholar 

  13. Yang YC, Zhang XD, Kong LS, Pan Q, Yang JL, Ding YF, Zhang BS, Ye CT. Neutron diffraction study of the nitride YTiFe11Nx. Solid State Commun. 1991;78(4):313.

    Article  CAS  Google Scholar 

  14. Yang JB, Mao WH, Yang YC, Ge SL, Cheng DF. Ab initio calculation of interstitial-atom effects in YFe10Mo2X (X = E, H, B, C, N, O, F). Phys Rev B. 1997;56(24):15647.

    Article  CAS  Google Scholar 

  15. Yang JB, Mao WH, Chen BP, Yang YC, Xu H, Han BS, Ge S, Ku W. Magnetic properties and magnetic domain structures of NdFe10.5Mo1.5 and NdFe10.5Mo1.5Nx. Appl Phys Lett. 1997;71(22):3290.

    Article  CAS  Google Scholar 

  16. Braun PB, Goedkoop JA. An X-ray and neutron diffraction investigation of the magnetic phase Al08.9Mn1.11. Acta Cryst. 1963;16(8):737.

    Article  CAS  Google Scholar 

  17. Yang YC, Ho WW, Lin C, Yang JL, Zhao BM, Zhu JX, Zeng XX, Zhang BS, Jin L. Neutron diffraction study of hard magnetic alloy MnAlC. J Appl Phys. 1984;55(6):2053.

    Article  CAS  Google Scholar 

  18. Pareti L, Bolzoni F, Leccabue F, Ermakov AE. Magnetic anisotropy of MnAl and MnAlC permanent magnet materials. J Appl Phys. 1986;59(11):3824.

    Article  CAS  Google Scholar 

  19. Wei JZ, Song ZG, Yang YB, Liu SQ, Du HL, Han JZ, Zhou D, Wang CS, Yang YC, Franz A, Többens D, Yang JB. τ-MnAl with high coercivity and saturation magnetization. AIP Adv. 2014;4(12):127113.

    Article  Google Scholar 

  20. Zhao H, Yang WY, Shao ZY, Tian G, Zhou D, Du HL, Liu SQ, Han JZ, Wang CS, Xu J, Yu DB, Yang JB. Structural evolution, site ordering and magnetic properties of tetragonal Mn6- yGa2 +y (0 ≤ y ≤ 1.64). Scr Mater. 2017;129:6.

    Article  CAS  Google Scholar 

  21. Zhao H, Yang WY, Shao ZY, Tian G, Zhou D, Chen XP, Xia YH, Xie L, Liu SQ, Du HL, Han JZ, Wang CS, Yang YC, Yang JB. Structural evolution and magnetic properties of L10-type Mn54.5Al45.5-xGax (x = 0.0, 15.0, 25.0, 35.0, 45.5) phase. J Alloys Compd. 2016;680:14.

    Article  CAS  Google Scholar 

  22. Schweitzer J, Tasset F. Polarised neutron study of the RCo5 intermetallic compounds. I. The cobalt magnetisation in YCo5. J Phys F. 1980;10(12):2799.

    Article  Google Scholar 

  23. Givord D, Li HS, Tasset F. Polarized neutron study of the compounds Y2Fe14B and Nd2Fe14B. J Appl Phys. 1985;57(1):4100.

    Article  CAS  Google Scholar 

  24. Givord D, Laforest J, Lemaire R. Polarized neutron study of the itinerant electron metamagnetism in ThCo5. J Appl Phys. 1979;50(11):7489.

    Article  CAS  Google Scholar 

  25. Teplykh AE, Bogdanov SG, Choi Y, Kudrevatykh NV, Pirogov AN, Popov AG, Skryabin YN, Vyatkin VP. Determination of texture degree of NdFeB-magnets by means of neutron diffraction. Solid State Phenom. 2011;168–169:161.

    Google Scholar 

  26. Alker A, Jansen E, Schäfer W, Kirfel A, Seitz D, Grönefeld M. Neutron diffraction applied to the study of microstructure and texture of industrial magnetic alnico material. Mater Sci Forum. 1998;278–281:514.

    Article  Google Scholar 

  27. Takeshita T. Present status of the hydrogenation-decomposition-desorption-recombination process as applied to the production of magnets. J Alloys Compd. 1993;193(1–2):231.

    Article  CAS  Google Scholar 

  28. Gutfleisch O, Martinez N, Verdier M, Harris IR. Phase transformations during the disproportionation stage in the solid HDDR process in a Nd16Fe76B8 alloy. J Alloys Compd. 1994;215(1–2):227.

    Article  CAS  Google Scholar 

  29. Liesert S, Fruchart D, de Rango P, Soubeyroux JL. The hydrogenation–disproportionation–desorption–recombination process of Nd2Fe14B studied by in situ neutron diffraction and thermomagnetic measurements. J Alloys Compd. 1997;253–254:140.

    Article  Google Scholar 

  30. Soubeyroux JL, Fruchart D, Liesert S, de Rango P, Rivoirard S. In situ neutron diffraction study of the HDDR process of NdFeB magnets. Phys B. 1998;241–243:341.

    Google Scholar 

  31. Lyubina J, Isnard O, Gutfleisch O, Muller KH, Schultz L. Ordering of nanocrystalline Fe–Pt alloys studied by in situ neutron powder diffraction. J Appl Phys. 2006;100(9):094308.

    Article  Google Scholar 

  32. Lyubina J, Opahle I, Richter M, Gutfleisch O, Muller KH, Schultz L, Isnard O. Influence of composition and order on the magnetism of Fe–Pt alloys: neutron powder diffraction and theory. Appl Phys Lett. 2006;89(3):032506.

    Article  Google Scholar 

  33. Périgo EA, Gilbert EP, Michels A. Magnetic SANS study of a sintered Nd–Fe–B magnet: estimation of defect size. Acta Mater. 2015;87:142.

    Article  Google Scholar 

  34. Perigo EA, Mettus D, Gilbert EP, Hautle P, Niketic N, van den Brandt B, Kohlbrecher J, McGuiness P, Fu Z, Michels A. Magnetic microstructure of a textured Nd–Fe–B sintered magnet characterized by small-angle neutron scattering. J Alloys Compd. 2016;661:110.

    Article  CAS  Google Scholar 

  35. Thomson T, Toney MF, Raoux S, Lee SL, Sun S, Murray CB, Terris BD. Structural and magnetic model of self-assembled FePt nanoparticle arrays. J Appl Phys. 2004;96(2):1197.

    Article  CAS  Google Scholar 

  36. Wolfers P, Bacmann M, Fruchart D. Single crystal neutron diffraction investigations of the crystal and magnetic structures of R2Fe14B (R = Y, Nd, Ho, Er). J Alloys Compd. 2001;317–318:39.

    Article  Google Scholar 

  37. Yang JB, Kamaraju K, Yelon WB, James WJ, Cai Q, Bollero A. Magnetic properties of the MnBi intermetallic compound. Appl Phys Lett. 2001;79(12):1846.

    Article  CAS  Google Scholar 

  38. Yang YB, Chen XG, Guo S, Yan AR, Huang QZ, Wu MM, Chen DF, Yang YC, Yang JB. Temperature dependences of structure and coercivity for melt-spun MnBi compound. J Magn Magn Mater. 2013;330:106.

    Article  CAS  Google Scholar 

  39. Yang JB, Yang YB, Chen XG, Ma XB, Han JZ, Yang YC, Guo S, Yan AR, Huang QZ, Wu MM, Chen DF. Anisotropic nanocrystalline MnBi with high coercivity at high temperature. Appl Phys Lett. 2011;99(8):082505.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2017YFA0403701, 2016YFB0700901, 2017YFA0206303 and 2017YFA0401502) and the National Natural Science Foundation of China (Nos. 51731001, 11675006, 11805006, 51371009 and 11504348).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Dong Kong or Jin-Bo Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, WY., Liang, D., Kong, XD. et al. Neutron diffraction studies of permanent magnetic materials. Rare Met. 39, 13–21 (2020). https://doi.org/10.1007/s12598-019-01300-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01300-8

Keywords

Navigation