Skip to main content
Log in

Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium (Li) metal has been considered as the most attractive anode materials for Li-ion batteries (LIBs) due to its high theoretic specific capacity. The formation of unstable solid electrolyte interphase (SEI) and dendritic Li on the metal anode, however, hindered its practical application. Herein, to address the issues, a Li-free electrode with ultrathin Al2O3 coated on reduced graphene oxide (rGO) membrane that covers a Cu foil current collector was developed. The composite electrode exhibits excellent interfacial protection of lithium metal deposited between Cu foil and rGO electrochemically. Firstly, it affords good Li+ permeability from the electrolyte. Secondly, the ultrathin Al2O3 has sufficient mechanical strength to inhibit the penetration of Li dendrite. Li metal was observed uniformly deposited between rGO membrane and Cu collector, and stable cycle performance of Li plating/stripping with Coulombic efficiency of ~ 91.75% at the 100th cycle is achieved in organic carbonate electrolyte without any additives.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shen F, Zhang F, Zheng Y, Fan Z, Li Z, Sun Z, Xuan Y, Zhao B, Lin Z, Gui X, Han X, Cheng Y, Niu C. Direct growth of 3D host on Cu foil for stable lithium metal anode. Energy Storage Mater. 2018;13(7):323.

    Article  Google Scholar 

  2. Duan H, Yin YX, Shi Y, Wang PF, Zhang XD, Yang CP, Shi JL, Wen R, Guo YG, Wan LJ. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. JACS. 2018;140(1):82.

    Article  Google Scholar 

  3. Zhang R, Cheng XB, Zhao CZ, Peng HJ, Shi JL, Huang JQ, Wang J, Wei F, Zhang Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater. 2016;28(11):2155.

    Article  Google Scholar 

  4. Liu W, Lin D, Pei A, Cui Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J Am Chem Soc. 2016;138(47):15443.

    Article  Google Scholar 

  5. Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun. 2016;7:10992.

    Article  Google Scholar 

  6. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2012;11(1):19.

    Article  Google Scholar 

  7. Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA, Liu J, Zhang JG. Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett. 2011;11(11):5071.

    Article  Google Scholar 

  8. Shao Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang JG, Wang Y, Liu J. Making Li-air batteries rechargeable: material challenges. Adv Funct Mater. 2013;23(8):987.

    Article  Google Scholar 

  9. Cheng XB, Peng HJ, Huang JQ, Zhang R, Zhao CZ, Zhang Q. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries. ACS Nano. 2015;9(6):6373.

    Article  Google Scholar 

  10. Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems: the solid electrolyte interphase model. J Electrochem Soc. 1979;126(12):2047.

    Article  Google Scholar 

  11. Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2016;3(3):1500213.

    Article  Google Scholar 

  12. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun. 2015;6:8058.

    Article  Google Scholar 

  13. Yan K, Lu Z, Lee HW, Xiong F, Hsu PC, Li Y, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy. 2016;1:16010.

    Article  Google Scholar 

  14. Ota H, Sakata Y, Otake Y, Shima K, Ue M, Yamaki JI. Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte. J Electrochem Soc. 2004;151(11):A1778.

    Article  Google Scholar 

  15. Markevich E, Fridman K, Sharabi R, Elazari R, Salitra G, Gottlieb HE, Gershinsky G, Garsuch A, Semrau G, Schmidt MA, Aurbach D. Amorphous columnar silicon anodes for advanced high voltage lithium ion full cells: dominant factors governing cycling performance. J Electrochem Soc. 2013;160(10):A1824.

    Article  Google Scholar 

  16. Mogi R, Inaba M, Jeong SK, Iriyama Y, Abe T, Ogumi Z. Effects of some organic additives on lithium deposition in propylene carbonate. J Electrochem Soc. 2002;149(12):A1578.

    Article  Google Scholar 

  17. Lu YY, Tu ZY, Archer LA. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater. 2014;13(10):961.

    Article  Google Scholar 

  18. Qian J, Xu W, Bhattacharya P, Engelhard M, Henderson WA, Zhang Y, Zhang JG. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy. 2015;15:135.

    Article  Google Scholar 

  19. Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang YM, Cui Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun. 2015;6:7436.

    Article  Google Scholar 

  20. Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J Electrochem Soc. 2009;156(8):A694.

    Article  Google Scholar 

  21. Choudhury S, Archer LA. Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv Electron Mater. 2016;2(2):1500246.

    Article  Google Scholar 

  22. Yan K, Lee HW, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014;14(10):6016.

    Article  Google Scholar 

  23. Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han X, Hu L, Lee SB, Rubloff GW, Noked M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015;9(6):5884.

    Article  Google Scholar 

  24. Schwöbel A, Hausbrand R, Jaegermann W. Interface reactions between LiPON and lithium studied by in situ X-ray photoemission. Solid State Ionics. 2015;273:51.

    Article  Google Scholar 

  25. Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol. 2014;9(8):618.

    Article  Google Scholar 

  26. Zhang R, Li NW, Cheng XB, Yin YX, Zhang Q, Guo YG. Advanced micro/nanostructures for lithium metal anodes. Adv Sci. 2017;4(3):1600445.

    Article  Google Scholar 

  27. Liang Z, Zheng G, Liu C, Liu N, Li W, Yan K, Yao H, Hsu P-C, Chu S, Cui Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015;15(5):2910.

    Article  Google Scholar 

  28. Cheng XB, Hou TZ, Zhang R, Peng HJ, Zhao CZ, Huang JQ, Zhang Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv Mater. 2016;28(15):2888.

    Article  Google Scholar 

  29. Stone GM, Mullin SA, Teran AA, Hallinan DT Jr, Minor AM, Hexemer A, Balsara NP. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J Electrochem Soc. 2012;159(3):A222.

    Article  Google Scholar 

  30. Hsieh YP, Hofmann M, Chang KW, Jhu JG, Li YY, Chen KY, Yang CC, Chang WS, Chen LC. Complete corrosion inhibition through graphene defect passivation. ACS Nano. 2013;8(1):443.

    Article  Google Scholar 

  31. Wang LP, Zhang L, Wang QJ, Li WJ, Wu B, Jia WS, Wang YH, Li JZ, Li H. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Mater. 2018;10(1):16.

    Article  Google Scholar 

  32. Blue MD, Danielson GC. Electrical properties of arc-evaporated carbon films. J Appl Phys. 1957;28(5):583.

    Article  Google Scholar 

  33. Han X, Gong Y, Fu K, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017;16(5):572.

    Article  Google Scholar 

  34. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806.

    Article  Google Scholar 

  35. Kazyak E, Wood KN, Dasgupta NP. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem Mater. 2015;27(18):6457.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51772241), the Key Research Program of Shaanxi Province (No. 2017ZDXM-GY-035), the Young Talent Support Plan of Xi’an Jiaotong University (No. DQ1J006), the Project from State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University (No. EIPE17306) and the Fundamental Research Funds for the Central Universities (Nos. zrzd2017004, xjj2017076) for financial support. We also acknowledge Dr. Zhao-Xi Chen for the polishing and edition of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gang Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Shen, F., Fan, ZY. et al. Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode. Rare Met. 37, 510–519 (2018). https://doi.org/10.1007/s12598-018-1054-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1054-6

Keywords

Navigation