Skip to main content
Log in

Enhanced compactness and element distribution uniformity of Cu2ZnSnS4 thin film by increasing precursor S content

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4 thin films were prepared by co-sputtering with Cu (or Cu2S), ZnS and SnS2 targets in this study. S amount in the precursor of Cu2ZnSnS4 thin film was verified by using Cu or Cu2S target. The effect of S amount in the precursor on the microstructure and element distribution of Cu2ZnSnS4 thin film was discussed. It was found that S content is sufficient in the precursor thin film using Cu2S instead of Cu target. The microstructure, composition homogeneity, and secondary phase formation of the Cu2ZnSnS4 thin film are seriously affected by S amount in the precursor thin film. Namely, sufficient S can improve the crystallization and orientation of the precursor thin film and enhance the compactness as well as composition homogeneity of the Cu2ZnSnS4 thin film after sulfurization. Moreover, the secondary phase formation in Cu2ZnSnS4 thin film can be greatly inhibited by increasing S content in the precursor thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw WS, Fukano T, Ito T, Motohiro T. Enhanced conversion efficiencies of Cu2ZnSnS4 based thin film solar cells by using preferential etching technique. Appl Phys Express. 2008;1(4):041201.

    Article  Google Scholar 

  2. Shin B, Gunawan O, Zhu Y, Bojarczuk NA, Chey SJ, Guha S. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog Photovolt Res Appl. 2013;21(1):72.

    Article  CAS  Google Scholar 

  3. Shavel A, Cadavid D, Ibáñez M, Carrete A, Cabot A. Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor. J Am Chem Soc. 2012;134(3):1438.

    Article  CAS  Google Scholar 

  4. Siebentritt S, Schorr S. Kesterites—a challenging material for solar cells. Prog Photovolt Res Appl. 2012;20(5):512.

    Article  CAS  Google Scholar 

  5. Tian Q, Xu XF, Han LB, Tang MH, Zou RJ, Chen ZG, Yu MH, Yang JM, Hu JQ. Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. Cryst Eng Comm. 2012;14(11):3847.

    Article  CAS  Google Scholar 

  6. Platzer-Björkman C, Scragg JJ, Flammersberger H, Kubart T, Edoff M. Influence of precursor sulfur content on film formation and compositional changes in Cu2ZnSnS4 films and solar cells. Sol Energy Mater Sol Cells. 2012;98(1):110.

    Article  Google Scholar 

  7. Zhang J, Shao L, Fu YJ, Xie EQ. Cu2ZnSnS4 thin films prepared by sulfurization of ion beam sputtered precursor and their electrical and optical properties. Rare Met. 2006;25(6):315.

    Article  Google Scholar 

  8. Ahmed S, Reuter KB, Gunawan O, Guo L, Romankiw LT, Deligianni H. A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv Energy Mater. 2012;2(2):253.

    Article  CAS  Google Scholar 

  9. Sarswat PK, Free ML, Tiwari A. Temperature-dependent study of the Raman A mode of Cu2ZnSnS4 thin films. Phys Status Solidi B. 2011;248(9):2170.

    CAS  Google Scholar 

  10. Zhong J, Xia Z, Luo M, Zhao J, Chen J, Wang L, Liu XS, Xue DJ, Cheng YB, Song HS, Tang J. Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S, Se)4 solar cells. Sci Rep. 2014;4:6288.

    Article  CAS  Google Scholar 

  11. He J, Sun L, Chen Y, Jiang JC, Yang PX, Chu JH. Influence of sulfurization pressure on Cu2ZnSnS4 thin films and solar cells prepared by sulfurization of metallic precursors. J Power Sources. 2015;273:600.

    Article  CAS  Google Scholar 

  12. Narayana T, Subbaiah YPV, Prathap P, Reddy YBK, Reddy KTR. Influence of sulfurization temperature on physical properties of Cu2ZnSnS4 thin films. J Renew Sustain Energy. 2013;5(3):116.

    Article  Google Scholar 

  13. Ge J, Wu YH, Zhang CJ, Zuo SH, Jiang JC, Ma JH, Yang PX, Chu JH. Comparative study of the influence of two distinct sulfurization ramping rates on the properties of Cu2ZnSnS4 thin films. Appl Surf Sci. 2012;258(19):7250.

    Article  CAS  Google Scholar 

  14. Katagiri H, Jimbo K, Maw WS, Oishi K, Yamazaki M, Araki H, Takeuchi A. Development of CZTS-based thin film solar cells. Thin Solid Films. 2009;517(7):2455.

    Article  CAS  Google Scholar 

  15. Flammersberger H. Experimental study of Cu2ZnSnS4 thin film for solar cells. Uppsala: Uppsala University; 2010. 43.

    Google Scholar 

  16. Son DH, Kim DH, Yang KJ, Nam D, Gansukh M, Cheong H, Kang JK. Influence of precursor sulfur content on film formation and the properties of sulfurized Cu2ZnSnS4 thin films for solar cells. Phys Status Solidi A. 2014;211(4):946.

    Article  CAS  Google Scholar 

  17. Guo QJ, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc. 2010;132(49):17384.

    Article  CAS  Google Scholar 

  18. Todorov TK, Reuter KB, Mitzi DB. High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater. 2010;22(20):E156.

    Article  CAS  Google Scholar 

  19. Todorov TK, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB. Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells. Adv Energy Mater. 2013;3(1):34.

    Article  CAS  Google Scholar 

  20. Lin X, Kavalakkat J, Kornhuber K, Levcenko S, Ch M. Lux-Steiner, Ennaoui A. Structural and optical properties of Cu2ZnSnS4 thin film absorbers from ZnS and Cu3SnS4 nanoparticle precursors. Thin Solid Films. 2013;535(6):10.

    Article  CAS  Google Scholar 

  21. Ericson T, Scragg JJ, Kubart T, Törndahl T, Platzer-Björkman C. Annealing behavior of reactively sputtered precursor films for Cu2ZnSnS4 solar cells. Thin Solid Films. 2013;535(6):22.

    Article  CAS  Google Scholar 

  22. Schneider J, Kirby RD. Raman scattering from ZnS polytypes. Phys Rev B Condens Matter. 1972;6(4):1290.

    Article  CAS  Google Scholar 

  23. Fontané X, Calvo-Barrio L, Izquierdo-Roca V, Saucedo E, Pérez-Rodriguez A, Morante JR, Berg DM, Dale PJ, Siebentritt S. In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications. Appl Phys Lett. 2011;98(18):181905.

    Article  Google Scholar 

  24. Fairbrother A, Fontané X, Izquierdo-Roca V, Espíndola-Rodríguez M, López-Marino S, Placidi M, Calvo-Barrio L, Pérez-Rodríguez A, Saucedo E. On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks. Sol Energy Mater Sol Cells. 2013;112(3):97.

    Article  CAS  Google Scholar 

  25. Fernandes PA, Salomé PMP, da Cunha AD. Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J Alloys Compd. 2011;509(28):7600.

    Article  CAS  Google Scholar 

  26. Berg DM, Djemour R, Gütay L, Siebentritt S, Dale PJ, Fontane X, Izquierdo-Roca V, Pérez-Rodriguez A. Raman analysis of monoclinic Cu2SnS3 thin film. Appl Phys Lett. 2012;100(19):192103.

    Article  Google Scholar 

  27. Schurr R, Hölzing A, Jost S, Hock R, Vob R, Schulze J, Kirbs A, Ennaoui A, Lux-Steiner M, Weber A, Kötschau I, Schock H-W. The crystallization of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors. Thin Solid Films. 2009;517(7):2465.

    Article  CAS  Google Scholar 

  28. Chalapathy RBV, Jung GS, Ahn BT. Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells. Sol Energy Mater Sol Cells. 2011;95(12):3216.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Foundation of Special Scientific Research Institutes (No. 2013EG115002), and the Innovation Foundation of General Research Institute for Nonferrous Metals (No. 52215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Wang, JN., Mi, J. et al. Enhanced compactness and element distribution uniformity of Cu2ZnSnS4 thin film by increasing precursor S content. Rare Met. 39, 256–261 (2020). https://doi.org/10.1007/s12598-016-0794-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0794-4

Keywords

Navigation