Skip to main content
Log in

High photocatalytic activity of Cu2O/TiO2/Pt composite films prepared by magnetron sputtering

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Cu2O/TiO2/Pt three-layer films were deposited on glass substrates using magnetron sputtering method. The surface morphology and the optical properties of the composite film were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible spectroscopy (UV–Vis) and photoluminescence spectroscopy (PL). The photocatalytic activity of the samples was evaluated by the photocatalytic degradation of methyl orange (MO) aqueous solution under visible light irradiation. The results indicate that the Cu2O/TiO2/Pt composite films are made up of three layers which are Pt layer, anatase-TiO2 layer and Cu2O layer from bottom to top. The surface of the films is even and composed of regular-shaped spherical particles. The photocatalytic activity of the Cu2O/TiO2/Pt three-layer film is much higher than that of the Cu2O/TiO2 double-layer film. Such enhancement is ascribed to the presence of Pt layer, which further inhibits the photogenerated electron–hole recombination, prolongs the lifetime of the photogenerated carriers, increases the quantum efficiency and hence improves the photocatalytic activity of the film effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhen Z, Wu RJ. The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature. J Taiwan Inst Chem E. 2015;50:276.

    Article  Google Scholar 

  2. Chen KY, Zhu LZ, Yang K. Acid-assisted hydrothermal synthesis of nanocrystalline TiO2 from titanate nanotubes: influence of acids on the photodegradation of gaseous toluene. J Environ Sci. 2015;27:232.

    Article  Google Scholar 

  3. Ashkarran AA, Hamidinezhad H, Haddadi H, Mahmoudi M. Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light. Appl Surf Sci. 2014;301:338.

    Article  Google Scholar 

  4. Yadava HM, Otari SV, Koli VB, Mali SS, Hong CK, Pawar SH, Delekar SD. Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. J Photochem Photobiol A. 2014;280:32.

    Article  Google Scholar 

  5. Li YT, Sun XG, Wang YH, Si HY, Yang ML, Peng Z. Preparation and photocatalytic properties of La doped SiO2/TiO2 nanocomposite powder. Rare Met. 2014;38(3):392.

    Google Scholar 

  6. Yang XJ, Wang S, Sun HM, Wang XB, Lian JS. Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles. Trans Nonferr Metal Soc. 2015;25(2):504.

    Article  Google Scholar 

  7. Wang YM, Liu SW, Lü MK, Wang SF, Gu F, Gai XZ, Cui XP, Pan J. Preparation and photocatalytic properties of Zr4+-doped TiO2 nanocrystals. J Mol Catal A Chem. 2004;215(1–2):137.

    Article  Google Scholar 

  8. Tang J, Durrant JR, Klug DR. Mechanism of photocatalytic water splitting in TiO2 reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc. 2008;130(42):13885.

    Article  Google Scholar 

  9. Habibi MH, Kamrani R. Photocatalytic mineralization of methylene blue from water by a heterogeneous copper-titania nanocomposite film. Desalin Water Treat. 2012;46(1–3):278.

    Article  Google Scholar 

  10. Tana LL, Onga WJ, Chaia SP, Mohamed AR. Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane. Appl Catal B Environ. 2015;166–167:251.

    Article  Google Scholar 

  11. Yan YH, Guan HY, Liu S, Jiang RY. Ag3PO4/Fe2O3 composite photocatalysts with an n–n heterojunction semiconductor structure under visible-light irradiation. Ceram Int. 2014;40(7):9095.

    Article  Google Scholar 

  12. Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V. Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. J Colloid Interface Sci. 2010;352(1):68.

    Article  Google Scholar 

  13. Khalida NR, Ahmeda E, Hong ZL, Ahmada M, Zhang YW, Khalid S. Cu-doped TiO2 nanoparticles/graphene composites for efficient visible-light photocatalysis. Ceram Int. 2013;39(6):7107.

    Article  Google Scholar 

  14. Lin CJ, Yang WT. Ordered mesostructured Cu-doped TiO2 spheres as active visible-light-driven photocatalysts for degradation of paracetamol. Chem Eng J. 2014;237:131.

    Article  Google Scholar 

  15. Xiong L, Yang F, Yan L, Yan N, Yang X, Qiu M, Yu Y. Bifunctional photocatalysis of TiO2/Cu2O composite under visible light: Ti3+ in organic pollutant degradation and water splitting. J Phys Chem Solids. 2011;72(9):1104.

    Article  Google Scholar 

  16. Li L, Xu L, Shi W, Guan J. Facile preparation and size-dependent photocatalytic activity of Cu2O nanocrystals modified titania for hydrogen evolution. Int J Hydrogen Energy. 2013;38(2):816.

    Article  Google Scholar 

  17. Li L, Lei J, Ji T. Facile fabrication of p–n heterojunctions for Cu2O submicroparticles deposited on anatase TiO2 nanobelts. Mater Res Bull. 2011;46(11):2084.

    Article  Google Scholar 

  18. Chekin F, Bagheri S, Abd Hamid SB. Synthesis of Pt doped TiO2 nanoparticles: characterization and application for electrocatalytic oxidation of L-methionine. Sensor Actuat B. 2013;177:898.

    Article  Google Scholar 

  19. Liu YM, Zhang WG. Structure, morphology and photocatalytic activity of Cu2O/Pt/TiO2 three-layered nanocomposite films. Mat Sci Semiconduct Proc. 2014;21:26.

    Article  Google Scholar 

  20. Cao A, Monnell JD, Matranga C, Wu J, Cao L, Gao D. Hierarchical nanostructured copper oxide and its application in arsenic removal. Phys Chem C. 2007;111(50):18624.

    Article  Google Scholar 

  21. Li Z, Chang SC, Williams RS. Self-assembly of alkanethiol molecules onto platinum and platinum oxide surfaces. Langmuir. 2003;19(17):6744.

    Article  Google Scholar 

  22. Zhang Y, Liang W, Yun J, Bai AY, Xue JB. The effect of Pt on the microstructure and photocatalytic properties of TiO2 system under visible illumination. J Funct Mater. 2009;40(3):508.

    Google Scholar 

  23. Ravichandran L, Selvam K, Krishnakumar B, Swaminathan M. Photovalorisation of pentafluorobenzoic acid with platinum doped TiO2. J Hazard Mater. 2009;167(1–3):763.

    Article  Google Scholar 

  24. Li Q, Liang W, Shang JK. Enhanced visible-light absorption from PdO nanoparticles in nitrogen-doped titanium oxide thin films. Appl Phys Lett. 2007;90(6):063109-1.

    Article  Google Scholar 

  25. Cheng XF, Leng WH, Liu DP, Xu YM, Zhang JQ, Cao CN. Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelectrochemical and photocatalytic properties. J Phys Chem C. 2008;112(23):8725.

    Article  Google Scholar 

  26. Cong Y, Zhang JL, Chen F, Anpo M, He DN. Photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III). J Phys Chem C. 2007;111(28):10618.

    Article  Google Scholar 

  27. Li X, Wen JQ, Low JX, Fang YP, Yu JG. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater. 2014;57(1):70.

    Article  Google Scholar 

  28. Sinatra L, LaGrow AP, Peng W, Kirmani AR, Amassian A, Idriss H, Bakr OM. A, Au/Cu2O–TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction. J Catal. 2015;322:109.

    Article  Google Scholar 

  29. Tian G, Pan K, Fu H, Jing L, Zhou W. Enhanced photocatalytic activity of S-doped TiO2–ZrO2 nanoparticles under visible-light irradiation. J Hazard Mater. 2009;166(2–3):939.

    Article  Google Scholar 

  30. Bai AY, Liang W, Yun J, Zhang Y, Xue JB. Photocatalysis properties of Pt doped TiO2 film. Trans Mater Heat Treat. 2010;31(2):6.

    Google Scholar 

  31. Manuela J, Haim L. Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the fermi level. Nano Lett. 2003;3(3):353.

    Article  Google Scholar 

  32. He C, Yu Y, Zhou CH, Hu XF. Structure and photocatalytic activities of Ag/TiO2 thin films. J Inorg Mater. 2002;17(5):1025.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51301118), the Projects of International Cooperation in Shanxi (No. 2014081002), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2013108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Xia Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, GX., Yu, B., Liu, YM. et al. High photocatalytic activity of Cu2O/TiO2/Pt composite films prepared by magnetron sputtering. Rare Met. 36, 821–827 (2017). https://doi.org/10.1007/s12598-016-0712-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0712-9

Keywords

Navigation