Skip to main content

Advertisement

Log in

Effect of thermomechanical treatment on microstructure and properties of Cu-Cr-Zr-Ag alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effects of thermomechanical treatment on the properties and microstructure of Cu-Cr-Zr alloy and Cu-Cr-Zr-Ag alloy were investigated. Ag addition improves the mechanical properties of the alloy through solid solution strengthening and brings a little effect on the electrical conductivity of the alloy. A new Cu-Cr-Zr-Ag alloy was developed, which has an excellent combination of the tensile strength, elongation, and electrical conductivity reaching 476.09 MPa, 15.43% and 88.68% IACS respectively when subjected to the optimum thermomechanical treatment, i.e., solution-treating at 920°C for 1 h, cold drawing to 96% deformation, followed by aging at 400°C for 3 h. TEM analysis revealed two kinds of finely dispersed precipitates of Cr and Cu4Zr. It is very important to use the mechanisms of solid solution strengthening, work hardening effect as well as precipitate pinning effect of dislocations to improve tensile strength of the alloy without adversely affecting its electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henmi Z. and Nagai T., Transmission electron microscopy of Cu-Zr-Cr Alloy, Mater. Trans., JIM, 1969, 10(5): 305.

    Google Scholar 

  2. Batra I.S., Dey G.K., Kulkarni U.D., and Banerjee S., Microstructure and properties of a Cu-Cr-Zr alloy, J. Nucl. Mater., 2001, 299(2): 91.

    Article  CAS  Google Scholar 

  3. Ryu H.J., Baik H.K., and Hong S.H., Effect of thermomechanical treatments on microstructure and properties of Cu-base leadframe alloy, J. Mater. Sci., 2000, 35(14): 3641.

    Article  CAS  Google Scholar 

  4. Zakharov M.V., Putsikin G.G., Stepanova A.V., and Vorontsova L.A., Copper-base conductor alloys with improved elevated temperature strength, Met. Sci. Heat Treat., 1960, 2(9): 487.

    Article  Google Scholar 

  5. Müller R., Arc-melted CuCr alloys as contact materials for vacuum interrupters, Siemens Forschungs-und Entwicklungsberichte/Siemens Research and Development Reports, 1988, 17(3): 105.

    Google Scholar 

  6. Okamoto H., Cu-Zr (Copper-Zirconium), J. Phase Equilib. Diffus., 2008, 29(2): 24.

    Google Scholar 

  7. Zhong J.W., Zhou H.T., Zhao Z.K., Li Q.B., and Zhou X., Effects of thermo-mechanical heat treatment processing on microstructure and properties of Cu-Cr-Zr alloy, Chin. J. Nonferr. Met., 2008, 18(6): 1032.

    CAS  Google Scholar 

  8. Zeng K.J. and Hämäläinen M., A theoretical study of the phase equilibria in the Cu-Cr-Zr system, J. Alloys Compd., 1995, 220(1–2): 53.

    Article  CAS  Google Scholar 

  9. Wang Z.Q., Zhong Y.B., Cao G.H., Wang C., Wang J., Ren W.L., Lei Z.S., and Ren Z.M., Influence of dc electric current on the hardness of thermally aged Cu-Cr-Zr alloy, J. Alloys Compd., 2009, 479(1–2): 303.

    Article  CAS  Google Scholar 

  10. Batra I.S., Dey G.K., Kulkarni U.D., and Banerjee S., Precipitation in a Cu-Cr-Zr alloy, Mater. Sci. Eng. A, 2003, 356(1–2): 32.

    Google Scholar 

  11. Wang Z.Q., Zhong Y.B., Lei Z.S., Ren W.L., Ren Z.M., and Deng K., Microstructure and electrical conductivity of Cu-Cr-Zr alloy aged with dc electric current, J. Alloys Compd., 2009, 471(1–2): 172.

    Article  CAS  Google Scholar 

  12. Correia J.B., Davies H.A., and Sellars C.M., Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys, Acta Mater., 1997, 45(1): 177.

    Article  CAS  Google Scholar 

  13. Mu S.G., Guo F.A., Tang Y.Q., Cao X.M., and Tang M.T., Study on microstructure and properties of aged Cu-Cr-Zr-Mg-RE alloy, Mater. Sci. Eng. A, 2008, 475(1–2): 235.

    Google Scholar 

  14. Holzwarth U. and Stamm H., The precipitation behaviour of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing, J. Nucl. Mater., 2000, 279(1): 31.

    Article  CAS  Google Scholar 

  15. Morris M.A., Leboeuf M., and Morris D.G., Recrystallization mechanisms in a Cu-Cr-Zr alloy with a bimodal distribution of particles, Mater. Sci. Eng. A, 1994, 188(1–2): 255.

    Google Scholar 

  16. Tang N.Y., Taplin D.M.R., and Dunlop G.L., Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium, Mater. Sci. Technol., 1985, 1(4): 270.

    CAS  Google Scholar 

  17. Zhan Y., Xu Y., Yu Z., Wang Y., Xie H., and Shi X., Cu-Cr-Zr alloy matrix composite prepared by powder metallurgy method, Powder Metall., 2006, 49(3): 253.

    Article  CAS  Google Scholar 

  18. Zhan Y.Z. and Zeng J.M., Fabrication and electrical sliding wear of graphitic Cu-Cr-Zr matrix composites, Int. J. Mater. Res., 2006, 97(2): 150.

    CAS  Google Scholar 

  19. Liu P., Kang B.X., Cao X.G., Huang J.L., Yen B., and Gu H.C., Aging precipitation and recrystallization of rapidly solidified Cu-Cr-Zr-Mg alloy, Mater. Sci. Eng. A, 1999, 265(1–2): 262.

    Google Scholar 

  20. Li H.Q., Xie S.S., Mi X.J., Liu Y., Wu P.Y., and Cheng L., Influence of cerium and yttrium on Cu-Cr-Zr alloys, J. Rare Earths, 2006, 24(Suppl. 1): 367.

    Google Scholar 

  21. Watanabe C., Monzen R., and Tazaki K., Mechanical properties of Cu-Cr system alloys with and without Zr and Ag, J. Mater. Sci., 2008, 43(3): 813.

    Article  CAS  Google Scholar 

  22. Tian S., Physical Property of Materials, Beihang University Press, Beijing, 2004: 45.

    Google Scholar 

  23. Balcerek K., Marucha Cz., Rafalowicz J., and Wawryk R., Deviation from matthiessen’s rule for thermal conductivity of quenched Zn-doped Cd crystals in the temperature range 5–20 K, Int. J. Thermophys., 1993, 14(6): 1229.

    CAS  Google Scholar 

  24. Zhong W.J., Copper Processing Practical Technology Manual, Metallurgical Industry Press, Beijing, 2007: 82.

    Google Scholar 

  25. Grünberger W., Heilmaier M., and Schultz L., Microstructure and mechanical properties of Cu-Ag microcomposites for conductor wires in pulsed high-field magnets, Int. J. Mater. Res., 2002, 93(1): 58.

    Google Scholar 

  26. Zhang L., Meng L., and Liu J.B., Effects of Cr addition on the microstructural, mechanical and electrical characteristics of Cu-6 wt.%Ag microcomposite, Scr. Mater., 2005, 52(7): 587.

    Article  CAS  Google Scholar 

  27. Su J.H., Dong Q.M., Liu P., Li H.J., and Kang B.X., Research on aging precipitation in a Cu-Cr-Zr-Mg alloy, Mater. Sci. Eng. A, 2005, 392(1–2): 422.

    Google Scholar 

  28. Gallagher P.C.J., The influence of alloying, temperature, and related effects on the stacking fault energy, Metall. Trans., 1970, 1(9): 2429.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haofeng Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, H., Mi, X., Huang, G. et al. Effect of thermomechanical treatment on microstructure and properties of Cu-Cr-Zr-Ag alloy. Rare Metals 30, 650–656 (2011). https://doi.org/10.1007/s12598-011-0444-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0444-9

Keywords

Navigation