Skip to main content
Log in

Performance evaluation of due-date based dispatching rules in dynamic scheduling of diffusion furnace

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

There has been extensive scheduling research relating to use of existing dispatching rules along with/without new dispatching rules and compared their performance behavior in job-shop, flow-shop, open-shop, flexible manufacturing system, and single machine with unit capacity environments using various scheduling objectives. However, it appears that there is no comparative study on analysis of dispatching rules for scheduling bottleneck batch processing machine in discrete parts manufacturing, particularly the diffusion furnace (DF) in semiconductor manufacturing (SM). This study addresses this research issue. For that, this study first, proposes the mathematical models for dynamic scheduling (DS) of DF to optimize the due-date based scheduling objectives: Total weighted tardiness, on-time delivery rate, total earliness/lateness, and maximum lateness. Due to the computational intractability of each the proposed mathematical models for large-scale problem, this study proposes greedy heuristic algorithm (GHA) based on due-date based dispatching rules (DDR). Because, dispatching rules are widely used in the SM industry. Accordingly, in this study twenty variants of GHA-DDR are proposed by considering various due-date based dispatching rules to compare the effects of due-date based dispatching rules in DS of DF. From the series of computational analysis carried out in this study, it is observed empirically that the proposed variants of GHA based on apparent tardiness cost (ATC) and batch ATC (BATC) dispatching rules yield consistently better solution for most of the scheduling objectives considered in this study. This observation is further verified by statistical analysis: Friedman test and Nemenyi multiple comparison test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Balasubramanian, H., Monch, L., Fowler, J., Pfund, M.: Genetic algorithm based scheduling of parallel batch machines with incompatible job families to minimize total weighted tardiness. Int. J. Prod. Res. 42(8), 1621–1638 (2004)

    Google Scholar 

  2. Bilyk, A., Mönch, L., Almeder, C.: Scheduling jobs with ready times and precedence constraints on parallel batch machines using meta heuristics. Comput. Ind. Eng. 78, 175–185 (2014)

    Google Scholar 

  3. Chan, F.T.S., Au, K.C., Chan, L.Y., Lau, T.L., Choy, K.L.: A genetic algorithm approach to machine flexibility problems in an ion plating cell. The International Journal of Advanced Manufacturing Technology. 31, 1127–1134 (2007)

    Google Scholar 

  4. Chen, J.C., Chen, T.-L., Pratama, B.R., Tu, Q.-F.: Capacity planning in thin film transistor—liquid crystal display cell process. Journal of Manufacturing Systems. 39, 63–78 (2016)

    Google Scholar 

  5. Cheng, H.C., Chiang, T.C., Fu, L.C.: A memetic algorithm for parallel batch machine scheduling with incompatible job families and dynamic job arrivals. In: IEEE International Conference on Systems, Man and Cybernetics Proceedings, pp. 541–546 (2008)

  6. Chiang, T.-C., Cheng, H.-C., Fu, L.-C.: A memetic algorithm for minimizing total weighted tardiness on parallel batch machines with incompatible job families and dynamic job arrival. Comput. Oper. Res. 37(12), 2257–2269 (2010)

    Google Scholar 

  7. Chiang, T.-C., Cheng, H,-C., Fu, L.-C.: An efficient heuristic for minimizing maximum lateness on parallel batch machines. In: Eighth International Conference on Intelligent Systems Design and Applications, pp. 621–627 (2008)

  8. Choi, Y.-C.: Dispatching rule-based scheduling algorithms in a single machine with sequence-dependent setup times and energy requirements. Procedia CIRP 41, 135–140 (2016)

    Google Scholar 

  9. Damodaran, P., Vélez-Gallego, M.C.: A simulated annealing algorithm to minimize makespan of parallel batch processing machines with unequal job ready times. Expert Syst. Appl. 39(1), 1451–1458 (2012)

    Google Scholar 

  10. Dirk, R., Monch, L.: Multiobjective scheduling of jobs with incompatible families on parallel batch machines. Lect. Notes Comput. Sci. 3906, 209–221 (2006)

    Google Scholar 

  11. Fachini, R.F., Esposto, K.F., Camargo, V.C.B.: Glass container production planning with warm-ups and furnace extraction variation losses. The International Journal of Advanced Manufacturing Technology. (2016). https://doi.org/10.1007/s00170-016-9369-7

    Article  Google Scholar 

  12. Fanti, M.P., Maione, B., Piscitelli, G., Turchiano, B.: Heuristic scheduling of jobs on a multi-product batch-processing machine. Int. J. Prod. Res. 34(8), 2163–2186 (1996)

    Google Scholar 

  13. Farhad, G.T., Laya, O.: Development of a set of algorithms for the multi-project scheduling problems. Journal of Industrial and Systems Engineering. 1, 23–36 (2007)

    Google Scholar 

  14. Farhad, G.T., Laya, O.: Heuristic rules for tardiness problem in flow shop with intermediate due dates. Int. J. Adv. Manuf. Technol. 71, 381–393 (2014)

    Google Scholar 

  15. Geiger, C.D., Uzsoy, R., Aytu, G.H.: Rapid modeling and discovery of priority dispatching rules: an autonomous learning approach. J. Sched. 9, 7–34 (2006)

    Google Scholar 

  16. Gong, H., Zhang, B., Peng, W.: Scheduling and common due date assignment on a single parallel-batching machine with batch delivery. Discrete Dynamics in Nature and Society. 1, 1–7 (2015)

    Google Scholar 

  17. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy, K.A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math. 5, 287–326 (1979)

    Google Scholar 

  18. Guo, C., Jiang, Z., Hu, H.: A hybrid ant colony optimization method for scheduling batch processing machine in the semiconductor manufacturing. In: Proceedings of the 2010 IEEE IEEM, pp. 1698–1701 (2010)

  19. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules for complex shop floor scenarios—a genetic programming approach. In: Proceeding of the GECCO’10, July 7–11, Portland, OR, USA (2010). http://www.genetic-programming.org/hc2010/6-Hildebrandt/Hildebrandt-Paper.pdf. Accessed 28 Jan 2017

  20. Horng, H.-C.: Comparing steady-state performance of dispatching rule-pairs in open shops. International Journal of Applied Science and Engineering. 4(3), 259–273 (2006)

    Google Scholar 

  21. Jayamohan, M.S., Rajendran, C.: New dispatching rules for shop scheduling: a step forward. Int. J. Prod. Res. 38(3), 563–586 (2000)

    Google Scholar 

  22. Jia, W., Jiang, Z.: A job-family-oriented algorithm for re-entrant batch processing machine scheduling. In: IEEE International Conference on Automation Science and Engineering, pp. 1022–1027 (2013)

  23. Jia, Z., Wang, C., Leung, J.Y.-T.: An ACO algorithm for makespan minimization in parallel batch machines with non-identical job sizes and incompatible job families. Appl. Soft Comput. 38(10), 395–404 (2016)

    Google Scholar 

  24. Jung, C., Pabst, D., Ham, M., Stehli, M., Rothe, M.: An effective problem decomposition method for scheduling of diffusion processes based on mixed integer linear programming. IEEE Trans. Semicond. Manuf. 27(3), 357–363 (2014)

    Google Scholar 

  25. Kim, Y.-D., Joo, B.-J., Choi, S.-Y.: Scheduling wafer lots on diffusion machines in a semiconductor wafer fabrication facility. IEEE Trans. Semicond. Manuf. 23(2), 246–254 (2010)

    Google Scholar 

  26. Koh, S.-G., Koo, P.-H., Kim, D.-C., Hur, W.-S.: Scheduling a single batch processing machine with arbitrary job sizes and incompatible job families. Int. J. Prod. Econ. 98(1), 81–96 (2005)

    Google Scholar 

  27. Krishnan, M., Chinnusamy, T.R., Karthikeyan, T.: Performance study of flexible manufacturing system scheduling using dispatching rules in dynamic environment. Procedia Engineering. 38, 2793–2798 (2012)

    Google Scholar 

  28. Kurz, M.E., Mason, S.J.: Minimizing total weighted tardiness on a batch processing machine with incompatible job families and job ready times. Int. J. Prod. Res. 46(1), 131–151 (2008)

    Google Scholar 

  29. Li, L., Qiao, F.: ACO-based scheduling for a single batch processing machine in semiconductor manufacturing. In: 4th IEEE International Conference on Automation Science and Engineering, pp. 85–90 (2008)

  30. Li, L., Pan, G., Fei, Q.: ACO-Based Multi-objective Scheduling of Identical Parallel Batch Processing Machines in Semiconductor Manufacturing. INTECH Open Access Publisher, Rejika (2010)

    Google Scholar 

  31. Li, L., Qiao, F., Wu, Q.D.: ACO-based scheduling of parallel batch processing machines to minimize the total weighted tardiness. In: 5th Annual IEEE Conference on Automation Science and Engineering, pp. 280–285 (2009)

  32. Malapert, A., Guéret, C., Rousseau, L.-M.: A constraint programming approach for a batch processing problem with non-identical job sizes. Eur. J. Oper. Res. 221(3), 533–545 (2012)

    Google Scholar 

  33. Malve, S., Uzsoy, R.: A genetic algorithm for minimizing maximum lateness on parallel identical batch processing machines with dynamic job arrivals and incompatible job families. Comput. Oper. Res. 34(10), 3016–3028 (2007)

    Google Scholar 

  34. Manfred, M., Alexander, K.S.: Comparison of dispatching rules for semiconductor manufacturing using large facility models. In: Proceedings of the I999 Winter Simulation Conference, pp. 709–713 (1999)

  35. Mathirajan, M., Sivakumar, A.I.: A literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor. Int. J. Adv. Manuf. Technol. 29, 990–1001 (2006)

    Google Scholar 

  36. Mathirajan, M., Gokhale, R., Ramasubramaniam, M.: Modeling of scheduling batch processor in discrete parts manufacturing. In: Ramanathan, U., Ramanathan, R. (eds.) Supply Chain Strategies, Issues and Models, pp. 153–192. Springer, London (2014)

    Google Scholar 

  37. Mehta, S.V., Uzsoy, R.: Minimizing total tardiness on a batch processing machine with incompatible job families. IIE Trans. 30, 165–178 (1998)

    Google Scholar 

  38. Monch, L., Balasubramanian, H., Fowler, J.W., Pfund, M.E.: Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times. Comput. Oper. Res. 32(11), 2731–2750 (2005)

    Google Scholar 

  39. Monch, L., Fowler, J.W., Mason, S.J.: Production Planning and Control for Semiconductor Wafer Fabrication Facilities: Modeling, Analysis, and Systems. Springer, New York (2013)

    Google Scholar 

  40. Monch, L., Zimmermann, J., Otto, P.: Machine learning techniques for scheduling jobs with incompatible families and unequal ready times on parallel batch machine. Eng. Appl. Artif. Intell. 19, 235–245 (2006)

    Google Scholar 

  41. Morton, T.E., Rachamadugu, R.V.: Myopic Heuristics for the Single Machine Weighted Tardiness Problem. The Robotics Institute, Carnegie-Mellon University, Pittsburgh, PA (1983)

    Google Scholar 

  42. Oulamara, A.: Makespan minimization in a no-wait flow shop problem with two batching machines. Comput. Oper. Res. 34(4), 1033–1050 (2007)

    Google Scholar 

  43. Ozturk, O., Espinouse, M.L, Mascolo, D., Gouin, A.: Optimizing the makespan of washing operations of medical devices in hospital sterilization services. In: IEEE Workshop on Health Care Management, pp. 1–6 (2010)

  44. Panwalkar, S.S., Iskander, W.: A survey of scheduling rules. Oper. Res. 25(1), 45–61 (1977)

    Google Scholar 

  45. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Prentice Hall, Upper Saddle River (2008)

    Google Scholar 

  46. Rardin, R.L., Uzsoy, R.: Experimental evaluation of heuristic optimization algorithms: a tutorial. J. Heuristics 7(3), 261–304 (2001)

    Google Scholar 

  47. Ravindra, G., Mathirajan, M.: Minimizing total weighted tardiness on heterogeneous batch processors with incompatible job families. The International Journal of Advanced Manufacturing Technology. 70, 1563–1578 (2014)

    Google Scholar 

  48. Sarin, S.C., Varadarajan, A., Wang, L.: A survey of dispatching rules for operational control in wafer fabrication. Production Planning and Control. 22(1), 4–24 (2011)

    Google Scholar 

  49. Settouti, N., Bechar, M.E.A., Chikh, M.A.: Statistical comparisons of the top 10 algorithms in data mining for classification task. International Journal of Interactive Multimedia and Artificial Intelligence. 4(1), 46–51 (2016)

    Google Scholar 

  50. Sha, D.Y., Hsu, S.-Y., Lai, X.D.: Design of due-date oriented look-ahead batching rule in wafer fabrication. Int. J. Adv. Manuf. Technol. 35, 596–609 (2007)

    Google Scholar 

  51. Silva, E.B.D., Costa, M.G., Silva, M.F.D.S.D., Pereira, F.H.: Simulation study of dispatching rules in stochastic job shop dynamic scheduling. World Journal of Modelling and Simulation 10(3), 231–240 (2014)

    Google Scholar 

  52. Uzsoy, R.: Scheduling batch processing machine with incompatible job families. Int. J. Prod. Res. 33(10), 2685–2708 (1995)

    Google Scholar 

  53. Vepsalainen, A.P.J., Morton, T.E.: Priority rules for job shops with weighted tardiness costs. Manage. Sci. 33(8), 1035–1047 (1987)

    Google Scholar 

  54. Vimala Rani, M., Mathirajan, M.: Dynamic scheduling of diffusion furnace in semiconductor manufacturing with real time events. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 104–108. https://doi.org/10.1109/ieem.2015.7385617 (2015)

  55. Vimala Rani, M., Mathirajan, M.: Multi objective dynamic real-time scheduling of batch processing machine. International Journal of Operations and Quantitative Management. 22(1), 53–73 (2016)

    Google Scholar 

  56. Vimala Rani, M., Mathirajan, M.: Performance evaluation of ATC based greedy heuristic algorithms in scheduling diffusion furnace in wafer fabrication. Journal of Information and Optimization Sciences. 37(5), 717–762 (2016)

    Google Scholar 

  57. Yaghubian, A.R., Hodgson, T.J., Joines, J.A.: Dry-or-buy decision support for dry kiln scheduling in furniture production. IIE Trans. 33(2), 131–136 (2001)

    Google Scholar 

  58. Zhang, R., Chang, P.-C., Song, S., Wu, C.: A multi-objective artificial bee colony algorithm for parallel batch-processing machine scheduling in fabric dyeing processes. Knowl.-Based Syst. 116(7), 114–129 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mathirajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: A LINGO set code for the proposed mathematical model for DS-DF to minimize TWT

figure a
figure b

Appendix 2: Performance analysis of each of the twenty proposed variants of GHA-DDR in comparison with optimal TWT based on Relative Percentage Deviation (RPD)

Problem instances

Optimal TWT

RPD of each of the proposed variants of GHA-DDR in comparison with optimal TWT

GHA-DDR1

GHA-DDR2

GHA-DDR3

GHA-DDR4

GHA-DDR5

GHA-DDR6

GHA-DDR7

GHA-DDR8

GHA-DDR9

GHA-DDR10

1

111

0.00

0.00

0.00

0.00

0.00

0.00

0.00

68.47

68.47

0.00

2

111

0.00

0.00

0.00

0.00

0.00

0.00

0.00

68.47

68.47

0.00

3

222

16.22

16.22

16.22

16.22

16.22

16.22

16.22

0.00

0.00

16.22

4

311

3.54

3.54

3.54

3.54

3.54

3.54

3.54

43.41

43.41

3.54

5

461

34.06

49.89

49.89

49.89

34.06

34.06

27.55

29.28

32.75

34.06

6

112

308.93

308.93

308.93

308.93

308.93

308.93

308.93

308.93

308.93

308.93

7

247

78.14

78.14

78.14

78.14

78.14

78.14

78.14

47.37

47.37

78.14

8

325

18.77

18.77

18.77

18.77

18.77

18.77

18.77

11.08

11.08

18.77

9

200

11.00

28.50

28.50

28.50

11.00

11.00

63.50

11.00

11.00

11.00

10

182

6.59

6.59

6.59

6.59

6.59

6.59

6.59

6.59

6.59

6.59

11

120

83.33

83.33

83.33

83.33

83.33

83.33

83.33

83.33

83.33

83.33

12

429

77.62

77.62

77.62

77.62

77.62

77.62

77.16

80.19

80.19

77.62

13

76

125.00

125.00

125.00

125.00

125.00

125.00

125.00

92.11

92.11

125.00

14

56

225.00

225.00

225.00

225.00

225.00

225.00

225.00

225.00

225.00

225.00

15

120

91.67

91.67

91.67

91.67

91.67

91.67

91.67

91.67

91.67

91.67

Problem instances

RPD of each of the proposed variants of GHA-DDR in comparison with optimal TWT

GHA-DDR11

GHA-DDR12

GHA-DDR13

GHA-DDR14

GHA-DDR15

GHA-DDR16

GHA-DDR17

GHA-DDR18

GHA-DDR19

GHA-DDR20

1

0.00

0.00

0.00

8.11

9.91

9.91

9.91

9.91

9.91

109.01

2

0.00

0.00

0.00

236.94

9.91

15.32

15.32

15.32

15.32

15.32

3

16.22

16.22

16.22

5.86

8.11

10.81

10.81

10.81

10.81

27.03

4

3.54

3.54

3.54

47.59

5.79

13.50

13.50

13.50

13.50

31.83

5

34.06

34.06

34.06

34.06

36.23

36.23

36.23

36.23

36.23

48.59

6

308.93

308.93

308.93

192.86

12.50

12.50

12.50

12.50

12.50

30.36

7

78.14

78.14

78.14

47.37

23.08

23.08

23.08

23.08

23.08

23.08

8

18.77

18.77

18.77

4.92

7.69

7.69

7.69

7.69

7.69

7.69

9

11.00

11.00

11.00

319.00

8.00

1.50

8.00

1.50

1.50

44.50

10

6.59

6.59

6.59

6.59

6.59

6.59

6.59

6.59

6.59

0.00

11

83.33

83.33

83.33

335.00

73.33

73.33

75.00

73.33

73.33

127.50

12

77.62

77.62

77.62

23.54

23.54

23.54

23.54

23.54

23.54

23.54

13

125.00

125.00

125.00

496.05

15.79

15.79

15.79

15.79

15.79

15.79

14

225.00

225.00

225.00

271.43

271.43

271.43

271.43

271.43

271.43

271.43

15

91.67

91.67

91.67

23.33

23.33

23.33

23.33

23.33

23.33

23.33

Appendix 3: Performance analysis of each of the twenty proposed variants of GHA-DDR in comparison with optimal OTD rate based on RPD

Problem instances

Optimal OTD rate

RPD of each of the proposed variants of GHA-DDR in comparison with optimal OTD rate

GHA-DDR1

GHA-DDR2

GHA-DDR3

GHA-DDR4

GHA-DDR5

GHA-DDR6

GHA-DDR7

GHA-DDR8

GHA-DDR9

GHA-DDR10

1

0.667

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

2

0.714

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

3

0.625

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

4

0.670

17.08

17.08

17.08

17.08

17.08

17.08

17.08

17.08

17.08

17.08

5

0.600

16.67

16.67

16.67

16.67

16.67

16.67

16.67

16.67

33.33

16.67

6

0.700

71.43

71.43

71.43

71.43

71.43

71.43

71.43

85.71

85.71

71.43

7

0.700

42.86

42.86

42.86

42.86

42.86

42.86

42.86

28.57

28.57

42.86

8

0.700

28.57

28.57

28.57

28.57

28.57

28.57

28.57

14.29

14.29

28.57

9

0.900

44.44

44.44

44.44

44.44

44.44

44.44

44.44

44.44

44.44

44.44

10

0.800

12.50

12.50

12.50

12.50

12.50

12.50

12.50

12.50

12.50

12.50

11

0.800

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

12

0.600

66.67

66.67

66.67

66.67

66.67

66.67

50.00

50.00

50.00

66.67

13

0.800

25.00

25.00

25.00

25.00

25.00

25.00

25.00

37.50

37.50

25.00

14

0.700

28.57

28.57

28.57

28.57

28.57

28.57

28.57

28.57

28.57

28.57

15

0.800

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

Problem instances

RPD of each of the proposed variants of GHA-DDR in comparison with optimal OTD rate

GHA-DDR11

GHA-DDR12

GHA-DDR13

GHA-DDR14

GHA-DDR15

GHA-DDR16

GHA-DDR17

GHA-DDR18

GHA-DDR19

GHA-DDR20

1

0.00

0.00

0.00

25.00

0.00

0.00

0.00

0.00

0.00

25.00

2

0.00

0.00

0.00

60.00

0.00

20.00

20.00

20.00

20.00

20.00

3

0.00

0.00

0.00

0.00

0.00

20.00

20.00

20.00

20.00

20.00

4

17.08

17.08

17.08

17.08

17.08

33.67

33.67

33.67

33.67

17.08

5

16.67

16.67

16.67

16.67

50.00

50.00

50.00

50.00

50.00

33.33

6

71.43

71.43

71.43

71.43

42.86

42.86

42.86

42.86

42.86

28.57

7

42.86

42.86

42.86

28.57

42.86

42.86

42.86

42.86

42.86

42.86

8

28.57

28.57

28.57

42.86

28.57

28.57

28.57

28.57

28.57

28.57

9

44.44

44.44

44.44

66.67

33.33

11.11

33.33

11.11

11.11

44.44

10

12.50

12.50

12.50

12.50

12.50

12.50

12.50

12.50

12.50

0.00

11

25.00

25.00

25.00

12.50

25.00

25.00

25.00

25.00

25.00

37.50

12

66.67

66.67

66.67

33.33

33.33

33.33

33.33

33.33

33.33

33.33

13

25.00

25.00

25.00

37.50

37.50

37.50

37.50

37.50

37.50

37.50

14

28.57

28.57

28.57

42.86

42.86

42.86

42.86

42.86

42.86

42.86

15

25.00

25.00

25.00

12.50

12.50

12.50

12.50

12.50

12.50

12.50

Appendix 4 Performance analysis of each of the twenty proposed variants of GHA-DDR in comparison with optimal TE/L based on RPD

Problem instances

Optimal TE/L

RPD of each of the proposed variants of GHA-DDR in comparison with optimal TE/L

GHA-DDR1

GHA-DDR2

GHA-DDR3

GHA-DDR4

GHA-DDR5

GHA-DDR6

GHA-DDR7

GHA-DDR8

GHA-DDR9

GHA-DDR10

1

40

55.00

55.00

55.00

55.00

55.00

55.00

55.00

65.00

65.00

55.00

2

60

30.00

30.00

30.00

30.00

30.00

30.00

30.00

36.67

36.67

30.00

3

71

39.44

39.44

39.44

39.44

39.44

39.44

39.44

22.54

22.54

39.44

4

91

17.58

17.58

17.58

17.58

17.58

17.58

17.58

26.37

26.37

17.58

5

135

11.85

22.22

22.22

22.22

11.85

11.85

25.19

22.22

17.78

11.85

6

102

41.18

41.18

41.18

41.18

41.18

41.18

41.18

66.67

66.67

41.18

7

73

106.85

106.85

106.85

106.85

106.85

106.85

106.85

52.05

52.05

106.85

8

80

80.00

80.00

80.00

80.00

80.00

80.00

80.00

87.50

87.50

80.00

9

54

148.15

166.67

166.67

166.67

148.15

148.15

248.15

148.15

148.15

148.15

10

59

57.63

57.63

57.63

57.63

57.63

57.63

57.63

57.63

57.63

57.63

11

68

185.29

185.29

185.29

185.29

185.29

185.29

185.29

185.29

185.29

185.29

12

116

51.72

51.72

51.72

51.72

51.72

51.72

87.93

101.72

101.72

51.72

13

84

66.67

66.67

66.67

66.67

66.67

66.67

66.67

78.57

78.57

66.67

14

52

151.92

151.92

151.92

151.92

151.92

151.92

151.92

151.92

151.92

151.92

15

37

297.30

297.30

297.30

297.30

297.30

297.30

297.30

297.30

297.30

297.30

Problem instances

RPD of each of the proposed variants of GHA-DDR in comparison with optimal TE/L

GHA-DDR11

GHA-DDR12

GHA-DDR13

GHA-DDR14

GHA-DDR15

GHA-DDR16

GHA-DDR17

GHA-DDR18

GHA-DDR19

GHA-DDR20

1

55.00

55.00

55.00

20.00

50.00

50.00

50.00

50.00

50.00

100.00

2

30.00

30.00

30.00

33.33

25.00

21.67

21.67

21.67

21.67

21.67

3

39.44

39.44

39.44

16.90

19.72

16.90

16.90

16.90

16.90

33.80

4

17.58

17.58

17.58

21.98

16.48

20.88

20.88

20.88

20.88

47.25

5

11.85

11.85

11.85

11.85

4.44

4.44

4.44

4.44

4.44

22.22

6

41.18

41.18

41.18

7.84

21.57

21.57

21.57

21.57

21.57

41.18

7

106.85

106.85

106.85

52.05

63.01

63.01

63.01

63.01

63.01

63.01

8

80.00

80.00

80.00

0.00

62.50

62.50

62.50

62.50

62.50

62.50

9

148.15

148.15

148.15

118.52

122.22

159.26

122.22

159.26

159.26

111.11

10

57.63

57.63

57.63

57.63

57.63

57.63

57.63

57.63

57.63

84.75

11

185.29

185.29

185.29

61.76

79.41

79.41

138.24

79.41

79.41

111.76

12

51.72

51.72

51.72

24.14

24.14

24.14

24.14

24.14

24.14

24.14

13

66.67

66.67

66.67

59.52

57.14

57.14

57.14

57.14

57.14

57.14

14

151.92

151.92

151.92

75.00

75.00

75.00

75.00

75.00

75.00

75.00

15

297.30

297.30

297.30

21.62

21.62

21.62

21.62

21.62

21.62

21.62

Appendix 5: Performance analysis of each of the twenty proposed variants of GHA-DDR in comparison with optimal Lmax based on RPD

Problem instances

Optimal Lmax

RPD of each of the proposed variants of GHA-DDR in comparison with optimal Lmax

GHA-DDR1

GHA-DDR2

GHA-DDR3

GHA-DDR4

GHA-DDR5

GHA-DDR6

GHA-DDR7

GHA-DDR8

GHA-DDR9

GHA-DDR10

1

21

23.81

23.81

23.81

23.81

23.81

23.81

23.81

0.00

0.00

23.81

2

21

23.81

23.81

23.81

23.81

23.81

23.81

23.81

0.00

0.00

23.81

3

21

23.81

23.81

23.81

23.81

23.81

23.81

23.81

0.00

0.00

23.81

4

26

0.00

0.00

0.00

0.00

0.00

0.00

0.00

7.69

7.69

0.00

5

37

13.51

13.51

13.51

13.51

13.51

13.51

13.51

35.14

0.00

13.51

6

20

30.00

30.00

30.00

30.00

30.00

30.00

30.00

105.00

105.00

30.00

7

24

16.67

16.67

16.67

16.67

16.67

16.67

16.67

16.67

16.67

16.67

8

25

20.00

20.00

20.00

20.00

20.00

20.00

20.00

56.00

56.00

20.00

9

14

7.14

7.14

7.14

7.14

7.14

7.14

42.86

7.14

7.14

7.14

10

16

6.25

6.25

6.25

6.25

6.25

6.25

6.25

6.25

6.25

6.25

11

13

23.08

23.08

23.08

23.08

23.08

23.08

23.08

23.08

23.08

23.08

12

30

30.00

30.00

30.00

30.00

30.00

30.00

73.33

83.33

83.33

30.00

13

8

62.50

62.50

62.50

62.50

62.50

62.50

62.50

187.50

187.50

62.50

14

15

20.00

20.00

20.00

20.00

20.00

20.00

20.00

20.00

20.00

20.00

15

9

22.22

22.22

22.22

22.22

22.22

22.22

22.22

22.22

22.22

22.22

Problem instances

RPD of each of the proposed variants of GHA-DDR in comparison with optimal Lmax

GHA-DDR11

GHA-DDR12

GHA-DDR13

GHA-DDR14

GHA-DDR15

GHA-DDR16

GHA-DDR17

GHA-DDR18

GHA-DDR19

GHA-DDR20

1

23.81

23.81

23.81

23.81

28.57

28.57

28.57

28.57

28.57

71.43

2

23.81

23.81

23.81

0.00

28.57

28.57

28.57

28.57

28.57

28.57

3

23.81

23.81

23.81

0.00

4.76

4.76

4.76

4.76

4.76

28.57

4

0.00

0.00

0.00

7.69

3.85

3.85

3.85

3.85

3.85

46.15

5

13.51

13.51

13.51

13.51

2.70

2.70

2.70

2.70

2.70

2.70

6

30.00

30.00

30.00

15.00

80.00

80.00

80.00

80.00

80.00

80.00

7

16.67

16.67

16.67

16.67

16.67

16.67

16.67

16.67

16.67

16.67

8

20.00

20.00

20.00

20.00

60.00

60.00

60.00

60.00

60.00

60.00

9

7.14

7.14

7.14

271.43

7.14

50.00

7.14

50.00

50.00

157.14

10

6.25

6.25

6.25

6.25

6.25

6.25

6.25

6.25

6.25

68.75

11

23.08

23.08

23.08

130.77

15.38

15.38

53.85

15.38

15.38

38.46

12

30.00

30.00

30.00

36.67

36.67

36.67

36.67

36.67

36.67

36.67

13

62.50

62.50

62.50

400.00

150.00

150.00

150.00

150.00

150.00

150.00

14

20.00

20.00

20.00

20.00

20.00

20.00

20.00

20.00

20.00

20.00

15

22.22

22.22

22.22

11.11

11.11

11.11

11.11

11.11

11.11

11.11

Appendix 6: Performance analysis of each of the twenty proposed variants of GHA-DDR in comparison with estimated optimal TWT based on ARPD score

S. No.

Problem configuration

ARPD score of each of the proposed variants of GHA-DDR in comparison with estimated optimal TWT

GHA-DDR1

GHA-DDR2

GHA-DDR3

GHA-DDR4

GHA-DDR5

GHA-DDR6

GHA-DDR7

GHA-DDR8

GHA-DDR9

GHA-DDR10

1

J1.A1, D1

53.12

54.65

54.65

54.65

53.12

53.79

44.38

55.86

63.17

53.79

2

J1.A1, D2

59.46

82.96

82.96

82.96

59.46

58.71

66.49

92.89

103.81

58.71

3

J1, A1, D3

152.71

219.08

219.08

219.08

152.71

152.71

164.72

150.20

155.90

152.71

4

J1, A2, D1

89.49

94.30

94.30

94.30

89.49

90.30

82.00

144.90

152.33

90.30

5

J1, A2, D2

247.90

220.21

220.21

220.21

247.90

247.09

128.69

221.13

278.96

247.09

6

J1, A2, D3

105.09

180.45

180.45

180.45

105.09

105.09

127.11

120.86

134.45

105.09

7

J1, A3, D1

57.56

56.08

56.08

56.08

57.56

57.56

46.00

155.74

156.72

57.56

8

J1, A3, D2

90.87

117.22

117.22

117.22

90.87

93.70

97.60

142.79

181.55

93.70

9

J1, A3, D3

120.41

173.58

173.58

173.58

120.41

120.41

165.21

246.28

280.79

120.41

10

J2.A1, D1

118.03

111.15

111.15

111.15

118.03

109.42

78.65

124.10

126.07

109.42

11

J2.A1, D2

74.90

120.01

120.01

120.01

74.90

73.17

88.36

100.55

109.14

73.17

12

J2, A1, D3

91.65

173.39

173.39

173.39

91.65

92.94

121.19

115.31

129.06

92.94

13

J2, A2, D1

134.21

138.21

138.21

138.21

134.21

138.44

107.61

130.43

131.02

138.44

14

J2, A2, D2

155.44

163.02

163.02

163.02

155.44

149.74

122.05

191.10

205.17

149.74

15

J2, A2, D3

185.21

229.86

229.86

229.86

185.21

180.35

177.63

211.60

226.70

180.35

16

J2, A3, D1

140.55

141.87

141.87

141.87

140.55

141.45

109.27

194.19

194.97

141.45

17

J2, A3, D2

157.98

183.43

183.43

183.43

157.98

182.57

122.41

183.93

188.70

182.57

18

J2, A3, D3

196.67

234.83

234.83

234.83

196.67

198.48

171.85

230.16

238.08

198.48

19

J3, A1, D1

75.81

80.04

80.04

80.04

75.81

79.39

41.07

66.93

68.46

79.39

20

J3, A1, D2

93.98

90.45

90.45

90.45

93.98

90.71

43.75

70.63

74.39

90.61

21

J3, A1, D3

98.03

110.72

110.72

110.72

98.03

92.42

61.02

72.44

82.17

92.42

22

J3, A2, D1

106.93

106.88

106.88

106.88

106.93

104.62

51.46

80.49

80.69

104.62

23

J3, A2, D2

97.54

109.79

109.79

109.79

97.54

107.39

56.90

82.11

83.97

107.39

24

J3, A2, D3

129.11

144.65

144.65

144.65

129.11

124.09

86.72

107.12

105.67

124.09

25

J3, A3, D1

99.34

107.88

107.88

107.88

99.34

105.02

62.84

91.01

92.36

105.02

26

J3, A3, D2

118.92

120.47

120.47

120.47

118.92

122.00

65.65

93.02

97.02

122.00

27

J3, A3, D3

133.23

132.27

132.27

132.27

133.23

124.85

76.90

94.22

104.62

124.85

S. No.

ARPD score of each of the proposed variants of GHA-DDR in comparison with estimated optimal TWT

GHA-DDR11

GHA-DDR12

GHA-DDR13

GHA-DDR14

GHA-DDR15

GHA-DDR16

GHA-DDR17

GHA-DDR18

GHA-DDR19

GHA-DDR20

1

53.12

53.79

53.12

165.02

0.26

3.70

4.38

2.06

2.06

2.55

2

59.46

58.71

59.46

268.97

9.54

4.24

6.50

3.86

3.93

20.82

3

152.71

152.71

152.71

765.51

3.14

47.60

47.41

46.43

46.43

65.32

4

89.49

90.30

89.49

182.12

5.59

2.53

2.62

1.78

1.78

5.80

5

247.90

247.09

247.90

533.80

37.76

1.22

20.56

0.59

0.89

33.53

6

105.09

105.09

105.09

499.80

18.01

5.44

12.19

1.52

1.52

27.67

7

57.56

57.56

57.56

199.47

3.69

6.29

8.34

5.43

4.92

8.93

8

90.87

93.70

90.87

172.65

8.84

2.83

8.12

2.03

2.03

18.28

9

120.41

120.41

120.41

496.82

6.61

4.53

10.99

4.57

4.57

24.85

10

118.03

109.55

118.03

109.22

2.26

3.74

2.68

2.20

1.89

6.27

11

74.90

73.17

74.90

101.96

6.67

5.52

7.21

2.69

1.40

16.32

12

91.65

92.94

91.65

145.22

8.22

10.42

11.96

9.55

6.02

2.20

13

134.21

138.44

134.21

127.14

3.11

6.82

5.03

1.04

1.28

11.71

14

155.44

149.74

155.44

152.84

22.60

8.88

18.53

2.94

1.31

23.31

15

185.21

180.35

185.21

202.49

18.10

8.57

21.11

4.65

1.50

16.25

16

140.55

141.45

140.55

183.36

19.77

9.65

11.66

0.57

0.93

15.53

17

157.98

182.57

157.98

165.69

24.65

7.23

20.92

2.59

0.85

47.37

18

196.67

198.48

196.67

211.44

47.41

6.39

39.17

3.80

3.36

47.04

19

75.81

80.31

75.81

58.08

3.94

1.61

3.56

0.13

1.00

7.87

20

93.98

90.64

93.98

60.76

1.68

4.25

2.24

0.23

2.62

9.16

21

98.03

95.31

98.03

58.15

0.99

4.31

2.91

1.37

1.22

9.53

22

106.93

103.67

106.93

74.43

4.19

2.73

0.26

0.13

1.37

6.12

23

97.54

107.39

97.54

74.04

5.57

6.92

4.41

0.87

0.96

12.16

24

129.11

124.09

129.11

75.75

10.54

7.26

11.89

0.28

1.85

28.51

25

99.34

104.39

99.34

76.33

3.26

4.85

1.98

0.77

1.43

6.15

26

118.92

122.00

118.92

90.27

5.90

7.24

3.05

0.34

0.82

19.52

27

133.23

124.85

133.23

89.45

17.01

14.11

6.76

1.40

2.85

18.04

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vimala Rani, M., Mathirajan, M. Performance evaluation of due-date based dispatching rules in dynamic scheduling of diffusion furnace. OPSEARCH 57, 462–512 (2020). https://doi.org/10.1007/s12597-019-00434-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-019-00434-8

Keywords

Navigation