Skip to main content
Log in

Mathematical model of semiconductor fiber ring laser gyroscope

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this paper, we have mathematically modeled and analyzed the composite cavity Semiconductor Fiber Ring Laser for its use as an inertial rotation sensor or gyroscope. The rate equations of Semiconductor Optical Amplifier and the transfer function of other components in the configuration, viz. optical filter, output coupler and Y-junction coupler have been considered separately for modelling. The final output expression shows the effect of these components on the intensity of the beat signal. The frequency of the beat signal intensity is shown to be independent of the parameters of the components, which underlines the advantage of frequency-domain sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Ford, Trans. Am. Inst. Electr. Eng. 33(1), 857 (1914)

    Article  Google Scholar 

  2. M. Matthews, J. Br. Inst. Radio Eng. 22(3), 231 (1961)

    Google Scholar 

  3. G. Newton, Proc. IRE 48(4), 520 (1960)

    Article  Google Scholar 

  4. A.L. Schawlow, C.H. Townes, Phys. Rev. 112(6), 1940 (1958)

    Article  ADS  Google Scholar 

  5. E.J. Post, Rev. Mod. Phys. 39(2), 475 (1967)

    Article  ADS  Google Scholar 

  6. G.J. Martin, IEEE Spectr. 23, 48 (1986)

    Article  ADS  Google Scholar 

  7. M.N. Armenise, C. Ciminelli, F. Dell’Olio, V.M. Passaro, Advances in Gyroscope Technologies (Springer, Berlin, 2010)

    MATH  Google Scholar 

  8. J. Nuttall, Electron. Power 33(11), 703 (1987)

    Article  Google Scholar 

  9. H. Arditty, H.C. Lefevre, Opt. Lett. 6(8), 401 (1981)

    Article  ADS  Google Scholar 

  10. V. Vali, R. Shorthill, Appl. Opt 15(5), 1099 (1976)

    Article  ADS  Google Scholar 

  11. H.C. Lefèvre, SPIE’s 1996 international symposium on optical science, engineering, and instrumentation, in (International Society for Optics and Photonics, 1996), pp. 2–17

  12. G.A. Sanders, M. Prentiss, S. Ezekiel, Opt. Lett. 6(11), 569 (1981)

    Article  ADS  Google Scholar 

  13. R. Meyer, S. Ezekiel, D.W. Stowe, V. Tekippe, Opt. Lett. 8(12), 644 (1983)

    Article  ADS  Google Scholar 

  14. F. Aronowitz, dts (1999)

  15. W. Chow, J. Gea-Banacloche, L. Pedrotti, V. Sanders, W. Schleich, M. Scully, Rev. Mod. Phys. 57(1), 61 (1985)

    Article  ADS  Google Scholar 

  16. M. Faucheux, D. Fayoux, J. Roland, J. Opt. 19(3), 101 (1988)

    Article  ADS  Google Scholar 

  17. K.U. Schreiber, J.P.R. Wells, Rev. Sci. Instrum. 84(4), 041101 (2013)

    Article  ADS  Google Scholar 

  18. C. Ciminelli, F. Dell’Olio, C.E. Campanella, M.N. Armenise, Adv. Opt. Photonics 2(3), 370 (2010)

    Article  Google Scholar 

  19. S. Schwartz, F. Gutty, G. Feugnet, É. Loil, J.P. Pocholle, Opt. Lett. 34(24), 3884 (2009)

    Article  ADS  Google Scholar 

  20. S. Kim, H. Kim, B. Kim, Opt. Lett. 19(22), 1810 (1994)

    Article  ADS  Google Scholar 

  21. S. Schwartz, F. Gutty, G. Feugnet, J.P. Pocholle, G. Desilles,

  22. K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, Opt. Quantum Electron. 31(12), 1219 (1999)

    Article  Google Scholar 

  23. R. Kadiwar, I. Giles, Electron. Lett. 25(25), 1729 (1989)

    Article  ADS  Google Scholar 

  24. M. Nakazawa, Opt. Lett. 10(4), 193 (1985)

    Article  ADS  Google Scholar 

  25. R. Jopson, G. Eisenstein, M. Whalen, K. Hall, U. Koren, J. Simpson, Appl. Phys. Lett. 48(3), 204 (1986)

    Article  ADS  Google Scholar 

  26. V. Grigoruk, I. Pugach, Y. Onysko, Y. Slinchenko, V. Shanoylo, Laser and fiber-optical networks modeling, 2004, in Proceedings of LFNM 2004. 6th International Conference on (IEEE, 2004), pp. 32–34

  27. V.P. Duraev, S.V. Medvedev, Quantum Electron. 43(10), 914 (2013)

    Article  ADS  Google Scholar 

  28. P.L. Li, D.X. Huang, X.L. Zhang, J. Chen, L.R. Huang, IEEE J. Quantum Electron. 41(4), 581 (2005)

    Article  ADS  Google Scholar 

  29. A. Syed, M.R. Sayeh, in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2012), pp. JTu5A–8

  30. S. Oshiba, K. Nagai, M. Kawahara, A. Watanabe, Y. Kawai, Appl. Phys. Lett. 55(23), 2383 (1989)

    Article  ADS  Google Scholar 

  31. S. Tai, K. Kojima, S. Noda, K. Kyuma, K. Hamanaka, T. Nakayama, Appl. Phys. Lett. 49(20), 1328 (1986)

    Article  ADS  Google Scholar 

  32. Z. Wang, G. Verschaffelt, G. Mezosi, M. Sorel, J. Danckaert, S. Yu, in Optical Fiber Communication Conference (Optical Society of America, 2008), p. OWQ5

  33. Y. Takahashi, S. Sekiya, T. Suemune, Opt. Photonics J. 1(04), 167 (2011)

    Article  Google Scholar 

  34. T. Suemune, Y. Takahashi, Opt. Lasers Eng. 45(7), 789 (2007)

    Article  Google Scholar 

  35. K. Inagaki, S. Tamura, H. Noto, T. Harayama, in Optical Fiber Sensors (Optical Society of America, 2006), p. ME7

  36. K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, Electron. Lett. 34(18), 1775 (1998)

    Article  Google Scholar 

  37. V.V. Akparov, V.G. Dmitriev, V.P. Duraev, A.A. Kazakov, Quantum Electron. 40(10), 851 (2010)

    Article  ADS  Google Scholar 

  38. T. Ishida, S. Tamura, S. Sunada, K. Inagaki, S. Saito, T. Harayama, in 19th International Conference on Optical Fibre Sensors (International Society for Optics and Photonics, 2008), pp. 700,450–700,450

  39. L.N. Menegozzi, W.E. Lamb Jr., Phys. Rev. A 8(4), 2103 (1973)

    Article  ADS  Google Scholar 

  40. F. Aronowitz, R. Collins, Appl. Phys. Lett. 9(1), 55 (1966)

    Article  ADS  Google Scholar 

  41. R. Spreeuw, R.C. Neelen, N. Van Druten, E. Eliel, J. Woerdman, Phys. Rev. A 42(7), 4315 (1990)

    Article  ADS  Google Scholar 

  42. N. El-Sheimy, H. Hou, X. Niu, IEEE Trans. Instrum. Meas. 57(1), 140 (2008)

    Article  Google Scholar 

  43. C. Masoller, Opt. Commun. 128(4), 363 (1996)

    Article  ADS  Google Scholar 

  44. L.A. Coldren, S.W. Corzine, M.L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, vol. 218 (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  45. M. Sorel, G. Giuliani, A. Scirè, R. Miglierina, S. Donati, P. Laybourn, IEEE J. Quantum Electron. 39(10), 1187 (2003)

    Article  ADS  Google Scholar 

  46. C. Peng, M. Yao, J. Zhang, H. Zhang, Q. Xu, Y. Gao, Opt. Commun. 209(1), 181 (2002)

    Article  ADS  Google Scholar 

  47. G.P. Agrawal, N.A. Olsson, IEEE J. Quantum Electron. 25(11), 2297 (1989)

    Article  ADS  Google Scholar 

Download references

Funding

This work is funded by Research Center Imarat (RCI), Defence Research and Development Organisation (DRDO), India under the contract RCI/DCMM/LPD/CARS-0325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpit Khandelwal.

Ethics declarations

Conflicts of interest

There are no confict of interest in this work as one of the authors is the head of the funding agency and has no objection in publishing this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandelwal, A., Syed, A. & Nayak, J. Mathematical model of semiconductor fiber ring laser gyroscope. J Opt 46, 8–15 (2017). https://doi.org/10.1007/s12596-016-0368-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-016-0368-8

Keywords

Navigation