Skip to main content
Log in

Preliminary magnetic susceptibility characteristics of the Bharati promontory (Grovness Peninsula), Larsemann Hills, Prydz Bay region, East Antarctica

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The coastal tract of the Prydz Bay region in the East Antarctica exposes Archean to Late Proterozoic magmatic and medium- to high grade (amphibolite — granulite facies) metamorphic rocks. The para- and ortho gneisses from the Bharati promontory (Grovness Peninsula) forming a part of the Larsemann Hills in the southern segment of Prydz Bay were investigated for magnetic characterization. In this small peninsula the upper amphibolite facies gneisses occur as NE-trending bands. The para-gneisses show a range of mineral assemblages (± cordierite ± sillimanite ±garnet) while ortho-gneiss mineralogy includes quartz, feldspar, biotite, garnet. All the lithological units in Bharati promontory contain ubiquitous magnetite, however, with wide variation in the volume proportions. This has resulted in a wide range in magnetic susceptibility (10−4 to 10−2 SI). Magnetic foliations show a correspondence with the general trend of lithounits (050° NE) and define a resulting geometry of mainly D1 and D2 foliations. The magnetic lineations show a preferred orientation with moderate easterly plunge (mean vector 093/36). The findings have implications for the magnetic field survey because such fabrics would impart a strong horizontal component of induced magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AADC (2007) Geology of Larsemann Hills, Australian Antarctic Data Center Map No. 133–9.

    Google Scholar 

  • Abrahamson, N. (1992) On farsideness of paleomagnetic poles: Magnetic refraction, sediment compaction and dipole off-set. Stud. Geophys. Geodaet., v.36, pp.26–41.

    Article  Google Scholar 

  • ADMAP (2006) A Digital Magnetic Anomaly Map of the Antarctic. Antarctica, Theme 3, 109-116, DOI: 10.1007/3-540-32934-X12.

    Google Scholar 

  • Aranguren, A., Cuevas, J. and Tubia, J.M. (1996) Composite magnetic fabrics from S-C mylonites. Jour. Struct. Geol., v.18, pp.63–869.

    Article  Google Scholar 

  • Borradaile, G. J. and Henry, B. (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci. Rev., v.42, pp.49–93.

    Article  Google Scholar 

  • Black, L.P., Harley, S.L., Sun, S.S. and Mcculloch, M.T. (1987) The Rayner complex of East Antarctica: complex isotopic systemic within a Proterozoic mobile belt. Jour. Met. Geol., v.5, pp.1–26.

    Article  Google Scholar 

  • Caòon-Tapia, E. (1996) Single-grain versus distribution anisotropy: a simple three-dimensional model. Phy. Earth Planet. Interior, v.94, pp.149–158.

    Article  Google Scholar 

  • Carson, C.J., Dirks, P.G.H.M., Hand, M., Sims, J. and Wilson, C. J.L. (1995) Compressional and extensional tectonics in lowmedium pressure granulites from the Larsemann Hills, East Antarctica. Geol. Mag., v.132, pp.151–170.

    Article  Google Scholar 

  • Carson, C.J., Fanning, C.M. and Wilson, C.J.L. (1996) Timing of the Progress Granite, Larsemann Hills: evidence for Early Palaeozoic orogenesis within the east Antarctic Shield and implications for Gondwana assembly. Australian Jour. Earth Sci., v.43, pp.539–553.

    Article  Google Scholar 

  • Carson, C.J., Powell, R., Wilson, C.J.L. and Dirks, P.H.G.M. (1997) Partial melting during tectonic exhumation of a granulite terrane: an example from the Larsemann Hills, East Antarctica. Jour. Met. Geol., v.15, pp.105–126.

    Article  Google Scholar 

  • de Wall, H. and Greiling, R. O. (2000) Remagnetisation and magnetic refraction in Proterozoic dykes from central Scandinavia during Caledonian deformation. Phy. Chem. Earth, v.A25/5, pp.519–524.

    Article  Google Scholar 

  • de Wall, H., Pandit, M.K., Dotzler, R. and Just, J. (2012) Cryogenian transpression and granite intrusion along the western margin of Rodinia (Mt. Abu region): Magnetic fabric and geochemical inferences on Neoproterozoic geodynamics of the NW Indian block. Tectonophysics, v.554–557, pp.143–158.

    Article  Google Scholar 

  • Dirks, P.H.G.M. and Hand, M. (1995) Clarifying temperaturepressure paths via structures in granulite from the Bolingen Islands, Antarctica. Australian Jour. Earth Sci., v.42, pp.157–172.

    Article  Google Scholar 

  • Dirks, P.H.G.M., Carson, C.J. and Wilson, C.J.L. (1993) The deformation history of the Larsemenn Hills, Prydz Bay: the importance of the Pan-African (500 Ma) in East Antarctica. Antarctic Sci., v.5, pp.179–192.

    Article  Google Scholar 

  • Dirks, P.H.G.M. and Wilson, C.J.L. (1995) Crustal evolution of the East Antarctic mobile belt in Prydz Bay: continental collision at 500 Ma? Precambrian Res., v.75, pp.189–207.

    Article  Google Scholar 

  • Flinn, D. (1962) On folding during three-dimensional progressive deformation. Quart. Jour. Geol. Soc., v.118, pp.385–428.

    Article  Google Scholar 

  • Fitzsimons, I.C.W. (1997) The Brattstrand paragneiss and the SØstrene orthogneiss: A review of Pan-African metamorphism and Grenvillian relics in southern Prydz Bay. In: C.A. Ricci (Ed.), The Antarctic Region: Geological Evolution and Processes, Terra Antarctica Publication, pp.121–130.

    Google Scholar 

  • Fitzsimons, I.C.W. and Harley, S.L. (1991) Geological relationships in high-grade gneiss of the Brattstrand Bluffs coastline, Prydz Bay, east Antarctica. Australian Jour. Earth Sci., v.38, pp.497–519.

    Article  Google Scholar 

  • Fitzsimons, I.C.W. and Harley, S.L. (1992) Mineral reaction texture in high-grade gneisses: evidence for contrasting pressure-temperature paths in the Proterozoic Complex of East Antarctica. In: Y. Yoshida, K. Kaminuma and K. Shiraishi (Eds.), Recent Progress in Antarctic Earth Science, Terra Scientific Publishing, Tokyo, pp.103–111.

    Google Scholar 

  • Fitzsimons, I.C.W., Kinny, P.D. and Harley, S.L. (1997) Two stages of Zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in the Prydz Bay, East Antarctica. Terra Nova, v.9, pp.47–51.

    Article  Google Scholar 

  • Gaillot, P., de Saint-Blanquat, M. and Bouchez, J.L. (2006) Effects of magnetic interactions in anisotropy of magnetic susceptibility: Models, experiments and implications for igneous rock fabrics quantification. Tectonophysics, v.418, pp.3–19.

    Article  Google Scholar 

  • Golynsky, A. V., Alyavdin, S. V., Masolov, V. N., Tscherinov, A. S. and Volnukhin, V. S. (2002) The composite magnetic anomaly map of the East Antarctic. Tectonophysics, v.347, pp.109–120.

    Article  Google Scholar 

  • Hargraves, R.B., Johnson, D. and Chan, C. Y. (1991) Distribution anisotropy: the cause of AMS in igneous rocks? Geophys. Res. Lett., v.18, pp.2193–2196.

    Article  Google Scholar 

  • Harley, S. L. (1988) Proterozoic granulites from the Rauer Group, East Antarctica. I. Decompressional pressure- temperature paths deduced from mafic and felsic gneisses. Jour. Petrol., v.29, pp.1059–1095.

    Article  Google Scholar 

  • Harley, S.L. and Fitzsimons, I.C.W. (1995) High-grade metamorphism and deformation in the Prydz Bay Region, East Antarctica: terranes, events and relational correlations. India andAntarctica during the Precambrian. Mem. Geol. Soc. India, v.343, pp.73–100.

    Google Scholar 

  • Hensen, B.J. and Zhou, B. (1995) A Pan African granulite facies metamorphic episode in Prydz Bay, Antarctica: evidence from Sm-Nd garnet dating. Australian Jour. Earth Sci., v.42, pp.249–258.

    Article  Google Scholar 

  • Hensen, B.J. and Zhou, B. (1997) East Gondwana amalgamation by Pan-African collision? Evidence in the Prydz Bay region, East Antarctica. In: C.A. Ricci (Ed.), The Antarctic Region: Geological Evolution and Processes, Terra Antarctica Publ., pp.115–119.

    Google Scholar 

  • Hrouda, F. (1994) A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophy. Jour. Intl., v.118, pp.604–612.

    Article  Google Scholar 

  • Hrouda, F. and Janák, F. (1976) The changes in shape of the magnetic susceptibility ellipsoid during progressive metamorphism and deformation. Tectonophysics, v.34, pp.135–148.

    Article  Google Scholar 

  • Hunt, C.P., Moskowitz, B.M. and Banerjee, S.K. (1995) Magnetic Properities of Rocks and Minerals: Rock Physics and Phase Relations.A Handbook of Physical Constants, AGU Reference Shelf 3, pp.189–204.

    Article  Google Scholar 

  • Jelinek, V. (1981) Characterization of the magnetic fabrics of rocks. Tectonophysics, v.79, pp.63–67.

    Article  Google Scholar 

  • Kelsey, D.E., White, R.W., Powell, R., Wilson, C.J.L. and Quinn, D. (2003) New constraints on metamorphism in the Rauer Group, Prydz Bay, East Antarctica. Jour. Met. Geol., v.21, pp.739–759.

    Article  Google Scholar 

  • Kinny, P.D., Black, L.P. and Sheraton, J.W. (1993) Zircon ages and the distribution of Archean and Proterozoic rocks in the Rauer Islands. Antarctic Sci., v.5, pp.193–206.

    Article  Google Scholar 

  • Koppelt, U., Abrahamsen, N. and Voss, O. (1998) Magnetic modelling of strongly magnetized bodies. Phys. Chem. Earth, v.23, pp.1009–1014.

    Article  Google Scholar 

  • Kontny, A. and Dewall, H. (2000) The use of low and high k(T)- curves for the characterization of magneto-mineralogical changes during metamorphism. Phy. Chem. Earth, v.A25/5, pp.421–429.

    Article  Google Scholar 

  • Mamtani, M.A., Chadima, M., de Wall, H. and Greiling, R.O. (2012) Rocks, fabrics and magnetic anisotropy: An introduction to the issue in honour of František Hrouda. Internat. Jour. Earth Sci., v.101, pp.605–607.

    Article  Google Scholar 

  • Raposo, M.I.B., ďAgrella-Filho, M.S. and Siqueira, R. (2003) The effect of magnetic anisotropy on paleomagnetic directions in high-grade metamorphic rocks from the Juiz de Fora Complex, SE Brazil. Earth Planet. Sci. Lett., v.209, pp.131–147.

    Article  Google Scholar 

  • Reddy, C.D. and Dhar, A. (2008) Magnetic anomaly map for Bharati promontory, Larsemann Hills, East Antarctica. Curr. Sci., v.94, pp.715–717.

    Google Scholar 

  • Rochette, P., Jackson, M. and Aubourg, C. (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev. Geophys., v.30, pp.209–226.

    Article  Google Scholar 

  • Sen, K., Dubey, A.K., Tripathi, K. and Pfänder, J.A. (2012) Composite mesoscopic and magnetic fabrics of the Paleoproterozoic Wangtu Gneissic Complex, Himachal Himalaya, India: Implications for ductile deformation and superposed folding of the Himalayan basement rocks. Jour. Geodyn., v.61, pp.81–93.

    Article  Google Scholar 

  • Sheraton, J.W. and Collerson, K.D. (1983) Archaean and Proterozoic geological relationships in the Vestfold Hills- Prydz Bay area, Antarctica. BMR Jour. Australian Geol. Geophys., v.8, pp.119–128.

    Google Scholar 

  • Sheraton, J.W., Black, L.P. and Mcculloch, M.T. (1984) Regional geochemical and isotopic characteristic of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Archean continental crust in East Antarctica. Precambrian Res., v.26, pp.169–198.

    Article  Google Scholar 

  • Shrivastava, P. K., Asthana, R., Beg, M. J. and Ravindra, R. (2011) Characters of lake water of Bharati Promontory, Larsemann Hills, East Antarctica. Jour. Geol. Soc. India, v.78, pp.217–225.

    Article  Google Scholar 

  • Stephenson, A. (1994) Distribution anisotropy: two simple models for magnetic lineation and foliation. Phys. Earth Planet. Inter., v.82, pp.49–53.

    Article  Google Scholar 

  • Stüwe, K. and Powell, R. (1989) Low-pressure granulite facies metamorphism in the Larsemann Hills area, East Antarctica; Petrology and tectonic implications for the evolution of the Prydz Bay area. Jour. Met. Geol., v.7, pp.465–483.

    Article  Google Scholar 

  • Stüwe, K., Braun, H-M. and Peer, H. (1989) Geology and structure of the Larsemann Hills area, Prydz Bay, East Antarctica. Australian Jour. Earth Sci., v.36, pp.219–241.

    Article  Google Scholar 

  • Tarling, D.H. and Hrouda, F. (1993) The Magnetic Anisotropy of Rocks. Chapman and Hall, London, 217p.

    Google Scholar 

  • Tomezzoli, R.N., Mcdonald, W.D. and Tickyj, H. (2003) Composite magnetic fabrics and S-C structures in granite gneiss of Cerro de los Viejos, La Pampa province, Argentina. Jour. Struct. Geol., v.5, pp.351–368.

    Google Scholar 

  • Thost, D.E., Motoyoshi, B.J. and Hensen, B.J. (1992) Mode of occurrence, geochemistry and mineral textures of mafic to ultramafic rocks from the Bolingen Islands, Prydz Bay, East Antarctica. In: I. Yoshida, K. Kaminuma and K. Shiraishi (Eds.), Recent Progress in Antarctic Earth Science. Terra Scientific Publishing, Tokyo, pp.113–118.

    Google Scholar 

  • Thost, D.E., Hensen, B.J. and Motoyoshi, B.J. (1994) The geology of a rapidly uplifted medium to low pressure terrane of Pan-African age: the Bolingen Islands, Prydz Bay, eastern Antarctica. Petrology, v.2, pp. 293–316.

    Google Scholar 

  • Tingey, R.J. (1981) Geological investigations in Antarctica 1968–1969: The Prydz-Bay-Amery Ice Shelf — Prince Charles Mountains area: Bureau of Mineral Resources Australian Record, 34p.

    Google Scholar 

  • Tingey, R.J. (1991) The regional geology of Archaean and Proterozoic rocks in Antarctica. In: Tingey, R. J. (Ed.) The Geology of Antarctica, Oxford University Press, Oxford, pp.1–73

    Google Scholar 

  • Tong, L., Wilson, C.J.L. and Liu, X. (2002) A High-Grade Event of ~1100 Ma preserved within the ~500 Ma mobile belt of the Larsemann Hills, East Antarctica: further evidence from 40Ar-39Ar dating. Terra Antarctica, v.9, pp.73–86.

    Google Scholar 

  • Wang, Y., Liu, D., Chung, S-Lin., Tong, L. and Ren, L. (2008) Shrimp zircon age constraints from the Larsemann Hills region, Prydz Bay, for a Late Mesoproterozoic to Early Neoproterozoic tectonothermal event in East Antarctica. Amer. Jour. Sci., v.308, pp.573–617.

    Article  Google Scholar 

  • Yoshida, M. (1995) Assembly of East Gondwanaland during the Mesoproterozoic and its rejuvenation during the Pan-African period. In: M. Yoshida and M. Santosh (Eds.), India and Antarctica During the Precambrian, Mem. Geol. Soc. India, v.34, pp.22–45.

    Google Scholar 

  • Zhang, L., Tong, L., Liu, X. and Scharer, U. (1996) Conventional U-Pb age of the high-grade metamorphic rocks in the Larsemann Hills, East Antarctica. In: Z.H. Pang (Ed.), Advances in Solid Earth Sciences, Science Press, Beijing, pp.27–35.

    Google Scholar 

  • Zhao, Y., Song, B., Wang, Y., Ren, L., Li, J. and Chen, T. (1992) Geochronology of the late granite in the Larsemann Hills, East Antarctica. In: Y. Yoshida, K. Kaminuma, and K. Shiraishi (Eds.) Recent Progress in Antarctic Earth Science, Terra Scientific Publishing, Tokyo, pp.153–169.

    Google Scholar 

  • Zhao, Y., Liu, X., Song, B., Zhan, Z., Li, J., Yao, Y. and Wang, Y. (1995) Constraints on stratigraphic age of metasedimentary rocks of the Larsemann Hills, East Antarctica: possible implication for Neoproterozoic tectonics. Precambrian Res., v.75, pp.175–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Pandit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, M.K., de Wall, H. Preliminary magnetic susceptibility characteristics of the Bharati promontory (Grovness Peninsula), Larsemann Hills, Prydz Bay region, East Antarctica. J Geol Soc India 84, 163–173 (2014). https://doi.org/10.1007/s12594-014-0119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-014-0119-x

Keywords

Navigation