Skip to main content
Log in

Optimal Strategy in a Two Resources Two Consumers Grazing Model

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider a mathematical model of two herbivore groups and two available resources, described by a control system. The controls model how the herbivores feed on the two types of resources. The choice of these controls is based on the standard assumption of optimal feeding theory that requires each predator to maximize the net rate of energy intake during feeding. Qualitative analysis of the model highlights four resource thresholds, called resource switching densities. At these thresholds, herbivores can have pure dynamics, meaning that they consume only one type of resource, or adaptive dynamics, meaning that they consume both types of resources. Various equilibria, including the coexistence equilibrium and boundaries equilibria, are computed and their stability analysis are rigorously studied. A detailed description of the switching zones is made using Filippov’s solutions. Notably, we find that within the framework of adaptative dynamics, the system components may experience a long term sustainable coexistence where in the pure dynamics case, at least one component may go to extinction. Also, thanks to the adaptative dynamics, periodic behaviors in the system are observed. Finally, we provide some numerical simulations in order to illustrate our qualitative results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer Verlag, Berlin (1984)

    Book  MATH  Google Scholar 

  2. Berec, L., Eisner, J., Krivan, V.: Adaptive foraging does not always lead to more complex food webs. J. Theor. Biol. 266 (2), 211–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birkoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)

    Google Scholar 

  4. Cheverton, J., Kacelnik, A., Krebs, J.R.: Optimal foraging : constraints and currencies. In: Holldobler, B., Lindauer, M. (eds.) Experimental Behavioral Ecology and Sociobiology. Fortschritte der Zoologie (1985)

  5. Agreil C., Greff N., Polis P., Magda D., Meuret M., Mestelan P.: Des troupeaux et des hommes en espacesnaturels : une approche dynamique de la gestion pastorale. Guide technique du Conservatoire Rhône-Alpes des Espaces Naturels, 92p (2008)

  6. Dieci, L., Elia, B., Lopez, B.: A filippov sliding vector field on an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis. J. Different. Equ. 254(4), 1800–1832 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dieci, L., Lopez, L.: Sliding motion in filippov differential systems: Theorical results and computational approch. SIAM J. Num. Anal. 47, 2023–2051 (2009)

    Article  MATH  Google Scholar 

  8. Emlen, J.M.: The role of time and energy in food preference. Amer. Naturalist 100, 611–617 (1966)

    Article  Google Scholar 

  9. Emlen, J.M.: Optimal choice in animals. Amer. Naturalist 102, 385–389 (1968)

    Article  Google Scholar 

  10. Feng, Z., DeAngelis, D.: Mathematical Models of Plant-Herbivore Interactions. Chapman and Hall/CRC (2017)

    Book  MATH  Google Scholar 

  11. Filippov, A.: Differential equations with discontinuous righthand sides. Kluwer Academic Publishers (1988)

    Book  Google Scholar 

  12. Gouzé, J., Sari, T.: A class of piecewise linear differential equations arising in biological models. Dyn. Syst. 17, 299–316 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heitschmidt, R. K., Stuth, J. W.: Grazing management: An ecological perspective. Timber Press, Portland, Oregon, (1991)

  14. Krebs, J.R.: Optimal foraging theory :decision rules for predators. In: Davies, T. (ed.) Behavioural ecology: an evolutionary approach. Blackwell Scientific Publications, Oxford (1978)

    Google Scholar 

  15. Krebs, J.R.: Foraging strategies and their social significance. In: Marler, P., Vandenbergh, J.G. (eds) Social behavior and communication. Springer, Boston, MA (1979)

    Google Scholar 

  16. Krebs, J.R., Decision-making, Kacelnik A.: Davies (eds) Behavioural Ecology : An Evolutionary Approach, 3\(^\circ\)édition. Oxford, Blackwell Scientific Publications, (1991)

  17. Krivan, V.: Optimal foraging and predator-prey dynamics. Theoret. Populat. Biol. 49, 265–290 (1996)

    Article  MATH  Google Scholar 

  18. Krivan, V.: Dynamic ideal free distribution: effects of optimal of patch choice on predator-prey dynamics. Am. Nat. 149(1), 164–178, (1997)

    Article  Google Scholar 

  19. Krivan, V.: Evolutionary stability of optimal foraging: Partial preferences in the diet and patch models. J. Theoret. Biol. 267(4), 486–494 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krivan, V., Oswald, J.S.: Adaptive foraging and flexible food web topology. Evolut. Ecol. Res. 5, 623–652 (2003)

    Google Scholar 

  21. Krivan, V., Sikder, A.: Optimal foraging and predator-prey dynamics, ii. Theoret. Populat. Biol. 55, 111–126 (1999)

    Article  MATH  Google Scholar 

  22. MacArthur, R.H., Pianka, E.R.: On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966)

    Article  Google Scholar 

  23. Mangel, M., Clark, C.: Dynamic modeling in behavioral ecology, vol. 63. Princeton University Press, Princeton, NJ (1988)

    Google Scholar 

  24. Mendy, A., Tewa, J.J., Lam, M., Tchinda, M.P.: Hopf bifurcation in a grazing system with two delays. Mathemat. Comp. Simulat. 163, 90–129 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Noy-Meir, I.: Stability of grazing systems: an application of predator-prey graphs. J. Ecol. 1, 459–481 (1975)

    Article  Google Scholar 

  26. Pyke, G.H.: Optimal foraging theory : a critical review. An. Rev. Ecot. Syst. 15, 523–575 (1984)

    Article  Google Scholar 

  27. Pyke, G.H., Pulliam, H.R., Charnov, E.L.: Optimal foraging: a selective review of theory and test. Quarterly review of biology, 52, (1977)

  28. Qamar, J.A.K., Edamana, V.K., Easwaran, B.: Two-predator and two-prey species group defense model with switching effect. Int. J. Computat. Biosci. 1, 69–78 (2010)

    Google Scholar 

  29. Schoener, T.W.: A brief history of optimal foraging ecology. In: Pulliam, E. (ed.) Foraging Behavior. Plenum Press, New York (1987)

    Google Scholar 

  30. Stephens, D.W., Krebs, J.R.: Foraging theory. Princeton, Princeton University Press (1986)

    Google Scholar 

  31. Stewart, D.E.: A high accuracy method for solving odes with discontinuous right-hand-side. Numer. Math. 58, 299–328 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tewa, J.J., Bah, A., Noutchie, S.C.O.: Dynamical models of interactions between herds forage and water resources in sahelian region. Hindawi Publish. Corporat. Abstract Appl. Anal. 13, 2014 (2014)

    MATH  Google Scholar 

  33. Utkin, V.I.: Liding odes and their application in variable structure systems. MIR Publisher, Moskow (1978)

    Google Scholar 

  34. Utkin, V.I.: Sliding mode in control and optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Authors thank anonymous reviewers for useful suggestions on a previous draft of this paper that greatly improve its readability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mendy.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of Lemma 3

  1. (1)

    Since the vector field defined by the right hand side of system (1) is tangential on the boundary of \({\mathbb {R}}^4_+\), therefore for any initial condition in \({\mathbb {R}}^4_+\) the solution of system (1) remains in \({\mathbb {R}}^4_+\).

  2. (2)

    Let us now prove that the set \(\Omega\) is a positively invariant region and absorbing set for the system (1). From the first equation we have:

    $$\begin{aligned} R_1(t)\le \displaystyle \frac{K_1 R_1(0)}{R_1(0)+e^{-r_1t}(K_1-R_1(0))}. \end{aligned}$$

    Since \(r_1> 0\), one has \(\limsup \limits _{t \rightarrow \infty } R_1(t)\le K_1\). Similarly, one may deduce that \(\limsup \limits _{t \rightarrow \infty } R_2(t)\le K_2\). Let us set

    $$\begin{aligned} \omega (t)=R_1(t)+R_2(t)+\left( \displaystyle \frac{1}{e_1}+\displaystyle \frac{1}{e_2}\right) H_1(t)+\left( \displaystyle \frac{1}{e_1'}+\displaystyle \frac{1}{e_2'}\right) H_2(t) \end{aligned}$$

    and \(\eta >0\) be a constant, with \(\eta <\min (\mu _1,\mu _2)\). Then

    $$\begin{aligned} {\dot{\omega }}+\eta \omega= & {} {\dot{R}}_1+{\dot{R}}_2+\left( \frac{1}{e_1}+\frac{1}{e_2}\right) {\dot{H}}_1+\left( \frac{1}{e_1'}+\frac{1}{e_2'}\right) {\dot{H}}_2\\+ & {} \eta \Big (R_1+R_2+\left( \frac{1}{e_1}+\frac{1}{e_2}\right) H_1+\left( \frac{1}{e_1'}+\frac{1}{e_2'}\right) H_2\Big )\\= & {} (r_1+\eta )R_1-\displaystyle \frac{r_1R_1^2}{K_1}+(r_2+\eta )R_2-\displaystyle \frac{r_2R_2^2}{K_2}-(\mu _1-\eta )H_1-(\mu _2-\eta )H_2 \end{aligned}$$

    Since \(\eta <\min (\mu _1,\mu _2)\), we have

    $$\begin{aligned} {\dot{\omega }}+\eta \omega\le & {} (r_1+\eta )R_1-\displaystyle \frac{r_1R_1^2}{K_1}+(r_2+\eta )R_2-\displaystyle \frac{r_2R_2^2}{K_2}\\= & {} \frac{K_1}{4r_1}(r_1+\eta )^2-\frac{r_1}{K_1}\Big (R_1-\frac{K_1}{2r_1}(r_1+\eta )\Big )^2\\+ & {} \frac{K_2}{4r_2}(r_2+\eta )^2-\frac{r_2}{K_2}\Big (R_2-\frac{K_2}{2r_2}(r_2+\eta )\Big )^2\\\le & {} \frac{K_1}{4r_1}(r_1+\eta )^2+\frac{K_2}{4r_2}(r_2+\eta )^2=\nu . \end{aligned}$$

    Applying the theory of differential inequality (Birkoff and Rota [3]), we obtain

    $$\begin{aligned} 0<\omega \Big (R_1(t),R_2(t),H_1(t),H_2(t)\Big )\le \frac{\nu }{\eta }\Big (1-e^{-\eta t}\Big )+\Big (R_1(0),R_2(0),H_1(0),H_2(0)\Big )e^{-\eta t}. \end{aligned}$$

    Consequently, part 2 of Lemma 3 holds. This completes the proof.

Appendix B. Proof of Theorem 2

  1. (a)

    Stability of \(E_{01}^*=(R_{11}^*,0,0,H_{21}^*)\). The characteristic polynomial of the Jacobian matrix of system (1) at equilibrium \(E_{01}^*\) is given by

    $$\begin{aligned} P(\lambda )=(a_{22}-\lambda )(a_{33}-\lambda )(\lambda ^2-a_{11}\lambda -a_{14}a_{41}) \end{aligned}$$
    (19)

    where, \(a_{33}=\displaystyle \frac{e_1p_1\ell _1R_{11}^*}{1+p_1h_1\ell _1R_{11}^*}-\mu _1\), \(a_{22}=r_2-\displaystyle \frac{q_1\ell _1'H_{21}^*}{1+q_1h_1'\ell _1'R_{11}^*}\), \(a_{11}=r_1(1-\frac{R_{11}^*}{K_1})-\displaystyle \frac{q_1\ell _1'H_{21}^*}{(1+q_1h_1'\ell _1'R_{11}^*)^2}\), \(a_{14}=-\displaystyle \frac{q_1\ell _1'R_{11}^*}{1+q_1h_1'\ell _1'R_{11}^*}\) and \(a_{41}=\displaystyle \frac{e_1'q_1\ell _1'H_{21}^*}{(1+q_1h_1'\ell _1'R_{11}^*)^2}\). Since \(-a_{14}a_{41}>0\), then \(E_{01}^*\) is locally asymptotically stable if \(a_{33}<0\), \(a_{22}<0\) and \(a_{11}<0\) i.e., \({\mathcal {A}}_{01}<1\), \({\mathcal {A}}_{02}<1\) and \({\mathcal {A}}_{03}<1\), where \({\mathcal {A}}_{01}=\displaystyle \frac{e_1p_1\ell _1R_{11}^*}{\mu _1(1+h_1p_1\ell _1R_{11}^*)}\), \({\mathcal {A}}_{02}=\displaystyle \frac{r_2(1+h_1'q_1\ell _1'R_{11}^*)}{q_1\ell _1'H_{21}^*}\) and \({\mathcal {A}}_{03}=\displaystyle \frac{r_1\left( 1-\frac{R_{11}^*}{K_1}\right) (1+h_1'q_1\ell _1'R_{11}^*)^2}{q_1\ell _1'H_{21}^*}\).

  2. (b)

    Stability of \(E_{02}^*=(R_{12}^*,0,H_{12}^*,0)\). The characteristic polynomial of Jacobian matrix of system (1) at equilibrium \(E_{02}^*\) is given by

    $$\begin{aligned} P(\lambda )=(b_{22}-\lambda )(b_{44}-\lambda )(\lambda ^2-b_{11}\lambda -b_{13}b_{31}) \end{aligned}$$
    (20)

    where, \(b_{44}=\displaystyle \frac{e_1'q_1\ell _1'R_{12}^*}{1+q_1h_1'\ell _1'R_{12}^*}-\mu _2\), \(b_{22}=r_2-\displaystyle \frac{p_2\ell _2H_{12}^*}{1+p_1h_1\ell _1R_{12}^*}\), \(b_{11}=-\displaystyle \frac{ r_1R_{12}^*}{K_1}+\displaystyle \frac{p_1\ell _1^2H_{12}^*}{1+p_1h_1\ell _1R_{12}^*}\), \(b_{13}=-\displaystyle \frac{p_1\ell _1R_{12}^*}{1+p_1h_1\ell _1R_{12}^*}\) and \(b_{31}=\displaystyle \frac{e_1p_1\ell _1H_{12}^*}{(1+p_1h_1\ell _1R_{12}^*)^2}\). Since \(-b_{13}b_{31}>0\), then \(E_{02}^*\) is locally asymptotically stable if \(b_{44}<0\), \(b_{22}<0\) and \(b_{11}<0\) i.e \({\mathcal {A}}_{04}<1\), \({\mathcal {A}}_{05}<1\) and \({\mathcal {A}}_{06}<1\), where \({\mathcal {A}}_{04}=\displaystyle \frac{e_1'q_1\ell _1'R_{12}^*}{\mu _2(1+h_1'q_1\ell _1'R_{12}^*)}\), \({\mathcal {A}}_{05}=\displaystyle \frac{r_2(1+h_1p_1\ell _1R_{12}^*)}{p_2\ell _2H_{12}^*}\) and \({\mathcal {A}}_{06}=\displaystyle \frac{K_1p_1^2\ell _1^2H_{12}^*}{r_1R_{12}^*(1+h_1p_1\ell _1R_{12}^*)}\).

  3. (c)

    Stability of \(E_{03}^*=(0,R_{23}^*,0,H_{23}^*)\). The characteristic polynomial of Jacobian matrix of system (1) at equilibrium \(E_{03}^*\) is given by

    $$\begin{aligned} P(\lambda )=(c_{11}-\lambda )(c_{33}-\lambda )(\lambda ^2-c_{22}\lambda -c_{24}a_{42}) \end{aligned}$$
    (21)

    where, \(c_{33}=\displaystyle \frac{e_2p_2\ell _2R_{23}^*}{1+h_2p_2\ell _2R_{23}^*}-\mu _1\), \(c_{11}=r_1-\displaystyle \frac{q_2\ell _2'H_{23}^*}{1+h_2'q_2\ell _2'R_{23}^*}\), \(c_{22}=r_2(1-\frac{R_{23}^*}{K_2})-\displaystyle \frac{q_2\ell _2'H_{23}^*}{(1+h_2'q_2\ell _2'R_{23}^*)^2}\), \(c_{24}=-\displaystyle \frac{q_2\ell _2'R_{23}^*}{1+q_2h_2'\ell _2'R_{23}^*}\) and \(c_{42}=\displaystyle \frac{e_2'q_2\ell _2'H_{23}^*}{(1+h_2'q_2\ell _2'R_{23}^*)^2}\). Since \(-c_{24}c_{42}>0\), then \(E_{03}^*\) is locally asymptotically stable if \(c_{33}<0\), \(c_{22}<0\) and \(c_{11}<0\) i.e \({\mathcal {A}}_{07}<1\), \({\mathcal {A}}_{08}<1\) and \({\mathcal {A}}_{09}<1\), where \({\mathcal {A}}_{07}=\displaystyle \frac{e_2p_2\ell _2R_{23}^*}{\mu _1(1+h_2p_2\ell _2R_{23}^*)}\), \({\mathcal {A}}_{08}=\displaystyle \frac{r_1(1+h_2'q_2\ell _2'R_{23}^*)}{q_2\ell _2'H_{23}^*}\) and \({\mathcal {A}}_{09}=\displaystyle \frac{r_2(1-\frac{R_{23}^*}{K_2})(1+h_2'q_2\ell _2'R_{23}^*)^2}{q_2\ell _2'H_{23}^*}\).

  4. (d)

    Stability of \(E_{04}^*=(0,R_{24}^*,H_{14}^*,0)\). The characteristic polynomial of Jacobian matrix of system (1) at equilibrium \(E_{04}^*\) is given by

    $$\begin{aligned} P(\lambda )=(d_{11}-\lambda )(d_{44}-\lambda )(\lambda ^2-d_{22}\lambda -d_{23}d_{32}) \end{aligned}$$
    (22)

    where, \(d_{44}=\displaystyle \frac{e_2'q_2\ell _2'R_{24}^*}{1+h_2'q_2\ell _2'R_{24}^*}-\mu _2\), \(d_{11}=r_1-\displaystyle \frac{p_1\ell _1H_{14}^*}{1+h_2p_2\ell _2R_{24}^*}\), \(d_{22}=-\displaystyle \frac{ r_2R_{24}^*}{K_2}+\displaystyle \frac{p_2^2\ell _2^2h_2H_{14}^*}{1+h_2p_2\ell _2R_{24}^*}\), \(d_{23}=-\displaystyle \frac{p_2\ell _2R_{24}^*}{1+h_2p_2\ell _2R_{24}^*}\) and \(d_{32}=\displaystyle \frac{e_2p_2\ell _2H_{14}^*}{(1+h_2p_2\ell _2R_{24}^*)^2}\). Since \(-d_{23}d_{32}>0\), then \(E_{04}^*\) is locally asymptotically stable if \(d_{44}<0\), \(d_{22}<0\) and \(d_{11}<0\) i.e \({\mathcal {A}}_{10}<1\), \({\mathcal {A}}_{20}<1\) and \({\mathcal {A}}_{30}<1\), where \({\mathcal {A}}_{10}=\displaystyle \frac{e_2'q_2\ell _2'R_{24}^*}{\mu _2(1+h_2'q_2\ell _2'R_{24}^*)}\), \({\mathcal {A}}_{20}=\displaystyle \frac{r_1(1+h_2p_2\ell _2R_{24}^*)}{p_1\ell _1H_{14}^*}\) and \({\mathcal {A}}_{30}=\displaystyle \frac{K_2p_2^2\ell _2^2h_2H_{14}^*}{ r_2R_{24}^*(1+h_2p_2\ell _2R_{24}^*)}\).

  5. (e)

    The Jacobian of system (1) at equilibrium \(E_{05}^*=(0,R_{25}^*,H_{15}^*,H_{25}^*)\) admits zero as a double eigenvalue while the others are \(e_{11}\) and \(e_{22}\). Hence, \(E_{05}^*\) is unstable when \(e_{11}>0\) or \(e_{22}>0\).

  6. (f)

    The Jacobian of system (1) at equilibrium \(E_{06}^*\) admits zero as a double eigenvalue while the others are \(f_{11}\) and \(f_{22}\). Hence, \(E_{06}^*\) is unstable when \(f_{11}>0\) or \(f_{22}>0\).

  7. (g)

    Stability of \(E_{07}^*=(R_{17}^*,R_{27}^*,0,H_{27}^*)\). The Jacobian matrix of system (1) at equilibrium \(E_{07}^*\) is given by:

    $$\begin{aligned} J(E_{07}^*)=\left( \begin{array}{cccc} g_{11} &{} g_{12} &{} g_{13} &{} g_{14} \\ g_{21} &{} g_{22} &{} g_{23} &{} g_{24} \\ 0 &{} 0 &{} g_{33} &{} 0 \\ g_{41} &{} g_{42} &{} 0 &{} 0 \end{array}\right) , \end{aligned}$$

    where \(g_{11}=r_1(1-\frac{2R_{17}^*}{K_1})-\displaystyle \frac{q_1\ell _1'H_{27}^*(1+q_2h_2'\ell _2'R_{27}^*)}{(1+q_1h_1'\ell _1'R_{17}^*+q_2h_2'\ell _2'R_{27}^*)^2}\); \(g_{12}=\displaystyle \frac{q_1\ell _1'q_2h_2'\ell _2'R_{17}^*H_{27}^*}{(1+q_1\ell _1'h_1'R_{17}^*+q_2\ell _2'h_2'R_{27}^*)^2}\); \(g_{13}=-\frac{p_1\ell _1R_{17}^*}{1+p_1\ell _1h_1R_{17}^*+p_2\ell _2h_2R_{27}^*}\); \(g_{14}=-\frac{q_1\ell _1'R_{17}^*}{1+q_1\ell _1'h_1'R_{17}^*+q_2\ell _2'h_2'R_{27}^*}\); \(g_{21}=\frac{q_1\ell _1'h_1'q_2\ell _2'R_{27}^*H_{27}^*}{(1+q_1\ell _1'h_1'R_{17}^*+q_2\ell _2'h_2'R_{27}^*)^2}\); \(g_{22}=r_2(1-\frac{2R_{25}^*}{K_2})-\displaystyle \frac{q_2\ell _2'H_{27}^*(1+q_1h_1'\ell _1'R_{17}^*)}{(1+q_1h_1'\ell _1'R_{17}^*+q_2h_2'\ell _2'R_{27}^*)^2}\); \(g_{23}=-\displaystyle \frac{q_2\ell _2'R_{27}^*}{1+q_1\ell _1'h_1'R_{17}^*+q_2\ell _2'h_2'R_{27}^*}\); \(g_{24}=-\displaystyle \frac{q_2\ell _2'R_{17}^*}{1+q_1\ell _1'h_1'R_{17}^*+q_2\ell _2'h_2'R_{27}^*}\); \(g_{41}=\displaystyle \frac{q_1\ell _1'H_{27}^*\Big (e_1'+q_2\ell _2'R_{27}^*(e_1'q_2h_2'-e_2'q_1h_1')\Big )}{(1+q_1\ell _1'h_1'R_{17}^*+q_2\ell _2'h_2'R_{27}^*)^2}\); \(g_{42}=\displaystyle \frac{q_2\ell _2'H_{27}^*\Big (e_2'+q_1\ell _1'R_{17}^*(e_2'q_1h_1'-e_1'q_2h_2')\Big )}{(1+q_1\ell _1'h_1'R_{17}^*+q_2\ell _2'h_2'R_{27}^*)^2}\); \(g_{33}=\displaystyle \frac{e_1p_1\ell _1R_{15}^*+e_2p_2\ell _2R_{27}^*}{1+p_1h_1\ell _1R_{17}^*+p_2h_2\ell _2R_{27}^*}-\mu _1\). The characteristic polynomial of Jacobian matrix of system (1) at equilibrium \(E_{07}^*\) is given by

    $$\begin{aligned} P(\lambda )=(g_{33}-\lambda )(\lambda ^3+G_2\lambda ^2+G_1\lambda +G_0) \end{aligned}$$
    (23)

    where, \(G_2=-(g_{11}+g_{22})\), \(G_1=g_{11}g_{22}-g_{12}g_{21}-g_{42}g_{23}-g_{14}g_{41}\) and \(G_0=g_{11}g_{42}g_{23}+g_{22}g_{14}g_{41}-g_{12}g_{41}g_{24}-g_{14}g_{21}g_{42}\). Equilibrium \(E_{07}^*\) is locally asymptotically stable if \(g_{33}<0\) and Routh-Hurwitz conditions

    $$\begin{aligned} G_2>0;\;\; G_0>0 \;\;and\;\; G_2G_1>G_0 \end{aligned}$$

    are satisfied.

  8. (h)

    Stability of \(E_{08}^*=(R_{18}^*,R_{28}^*,H_{18}^*,0)\). The Jacobian of model system (1) at equilibrium \(E_{08}^*\) is given by:

    $$\begin{aligned} J(E_{08}^*)=\left( \begin{array}{cccc} p_{11} &{} p_{12} &{} p_{13} &{} p_{14} \\ p_{21} &{} p_{22} &{} p_{23} &{} p_{24} \\ p_{31} &{} p_{32} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} p_{44} \end{array}\right) , \end{aligned}$$

    where, \(p_{11}=r_1(1-\frac{2R_{16}^*}{K_1})-\displaystyle \frac{p_1\ell _1H_{18}^*(1+p_2h_2\ell _2R_{28}^*)}{(1+p_1h_1\ell _1R_{18}^*+p_2h_2\ell _2R_{28}^*)^2}\); \(p_{12}=\displaystyle \frac{p_1\ell _1h_2p_2\ell _2R_{18}^*H_{18}^*}{(1+p_1\ell _1h_1R_{18}^*+p_2\ell _2h_2R_{28}^*)^2}\); \(p_{13}=-\frac{p_1\ell _1R_{16}^*}{1+p_1\ell _1h_1R_{16}^*+p_2\ell _2h_2R_{26}^*}\); \(p_{14}=-\frac{p_1\ell _1R_{18}^*}{1+p_1\ell _1h_1R_{18}^*+p_2\ell _2h_2R_{28}^*}\); \(p_{21}=\frac{p_1\ell _1h_1p_2\ell _2R_{28}^*H_{18}^*}{(1+p_1\ell _1h_1R_{16}^*+p_2\ell _2h_2R_{28}^*)^2}\); \(p_{22}=r_2(1-\frac{2R_{28}^*}{K_2})-\displaystyle \frac{p_2\ell _2H_{18}^*(1+p_1h_1\ell _1R_{18}^*)}{(1+p_1h_1\ell _1R_{18}^*+p_2h_2\ell _2R_{28}^*)^2}\); \(p_{23}=-\displaystyle \frac{p_2\ell _2R_{28}^*}{1+p_1\ell _1h_1R_{28}^*+p_2\ell _2h_2R_{28}^*}\); \(p_{24}=-\displaystyle \frac{q_2\ell _2'R_{18}^*}{1+q_1\ell _1'h_1'R_{18}^*+q_2\ell _2'h_2'R_{28}^*}\); \(p_{44}=\displaystyle \frac{e_1'q_1\ell _1'R_{18}^*+e_2'q_2\ell _2'R_{28}^*}{1+q_1h_1'\ell _1'R_{18}^*+q_2h_2'\ell _2'R_{28}^*}-\mu _1\); \(p_{31}=\displaystyle \frac{p_1\ell _1H_{18}^*\Big (e_1+p_2\ell _2R_{28}^*(e_1p_2h_2-e_2p_1h_1)\Big )}{(1+p_1\ell _1h_1R_{17}^*+p_2\ell _2h_2R_{28}^*)^2}\); \(p_{32}=\displaystyle \frac{p_2\ell _2H_{18}^*\Big (e_1+p_1\ell _1R_{18}^*(e_2p_1h_1-e_1p_2h_2)\Big )}{(1+p_1\ell _1h_1R_{18}^*+p_2\ell _2h_2R_{28}^*)^2}\); The characteristic polynomial of Jacobian matrix of system (1) at equilibrium \(E_{08}^*\) is given by

    $$\begin{aligned} P(\lambda )=(p_{44}-\lambda )(\lambda ^3+P_2\lambda ^2+P_1\lambda +P_0) \end{aligned}$$
    (24)

    where, \(P_2=-(p_{11}+p_{22})\), \(P_1=p_{11}p_{22}-p_{12}p_{21}-p_{32}p_{23}-p_{13}p_{31}\) and \(P_0=p_{11}p_{32}p_{23}+p_{22}p_{13}p_{31}-p_{12}p_{31}p_{23}-p_{13}p_{21}p_{32}\). Equilibrium \(E_{08}^*\) is locally asymptotically stable if \(p_{33}<0\) and Routh-Hurwitz conditions

    $$\begin{aligned} P_2>0;\;\; P_0>0 \;\;and\;\; P_2P_1>P_0 \end{aligned}$$

    are satisfied.

  9. (i)

    The Jacobian of model system (1) at the coexisting equilibrium \(E^*\) is given by:

    $$\begin{aligned} J(E^*)=\left( \begin{array}{cccc} a_{11} &{} a_{12} &{} a_{13} &{} a_{14} \\ a_{21} &{} a_{22} &{} a_{23} &{} a_{24} \\ a_{31} &{} a_{32} &{} 0 &{} 0 \\ a_{41} &{} a_{42} &{} 0 &{} 0 \end{array}\right) , \end{aligned}$$

    where, \(a_{11}=\displaystyle \frac{p_1\ell _1^2h_1R_1^*H_1^*}{(1+\ell _1p_1h_1R_1^*+\ell _2p_2h_2R_2^*)^2}+ \displaystyle \frac{q_1\ell _1'^2h_1'R_1^*H_2^*}{(1+q_1\ell _1'h_1'R_1^*+q_2\ell _2'h_2'R_2^*)^2}-\displaystyle \frac{r_1R_1^*}{K_1}\); \(a_{12}=\displaystyle \frac{p_1\ell _1p_2h_2\ell _2R_1^*H_1^*}{(1+p_1\ell _1h_1R_1^*+p_2\ell _2h_2R_2^*)^2}+ \displaystyle \frac{q_1\ell _1'q_2h_2'\ell _2'R_1^*H_2^*}{(1+q_1\ell _1'h_1'R_1^*+q_2\ell _2'h_2'R_2^*)^2}\); \(a_{13}=-\displaystyle \frac{p_1\ell _1R_1^*}{1+p_1\ell _1h_1R_1^*+p_2\ell _2h_2R_2^*}\); \(a_{14}=-\displaystyle \frac{q_1\ell _1'R_1^*}{1+q_1\ell _1'h_1'R_1^*+q_2\ell _2'h_2'R_2^*}\); \(a_{21}=\displaystyle \frac{p_1\ell _1h_1\ell _2R_2^*H_1^*}{(1+p_1\ell _1h_1R_1^*+p_2\ell _2h_2R_2^*)^2}+ \displaystyle \frac{q_1\ell _1'h_1'\ell _2'R_2^*H_2^*}{(1+q_1\ell _1'h_1'R_1^*+q_2\ell _2'h_2'R_2^*)^2}\); \(a_{22}=\displaystyle \frac{p_2\ell _2^2h_2R_2^*H_1^*}{(1+p_1\ell _1h_1R_1^*+p_2\ell _2h_2R_2^*)^2}+ \displaystyle \frac{q_2\ell _2'^2h_2'R_2^*H_2^*}{(1+q_1\ell _1'h_1'R_1^*+q_2\ell _2'h_2'R_2^*)^2}-\displaystyle \frac{r_2R_2^*}{K_2}\); \(a_{23}=-\displaystyle \frac{p_2\ell _2R_2^*}{1+p_1\ell _1h_1R_1^*+p_2\ell _2h_2R_2^*}\); \(a_{24}=-\displaystyle \frac{q_2\ell _2'R_2^*}{1+q_1\ell _1'h_1'R_1^*+q_2\ell _2'h_2'R_2^*}\); \(a_{31}=\displaystyle \frac{p_1\ell _1H_1^*\Big (e_1+p_2\ell _2R_2^*(e_1p_2h_2-e_2p_1h_1)\Big )}{(1+p_1\ell _1h_1R_1^*+p_2\ell _2h_2R_2^*)^2}\); \(a_{32}=\displaystyle \frac{p_2\ell _2H_1^*\Big (e_2+p_1\ell _1R_1^*(e_2p_1h_1-e_1p_2h_2)\Big )}{(1+p_1\ell _1h_1R_1^*+p_2\ell _2h_2R_2^*)^2}\); \(a_{41}=\displaystyle \frac{q_1\ell _1'H_2^*\Big (e_1'+q_2\ell _2'R_2^*(e_1'q_2h_2'-e_2'q_1h_1')\Big )}{(1+q_1\ell _1'h_1'R_1^*+q_2\ell _2'h_2'R_2^*)^2}\); \(a_{42}=\displaystyle \frac{q_2\ell _2'H_2^*\Big (e_2'+q_1\ell _1'R_1^*(e_2'q_1h_1'-e_1'q_2h_2')\Big )}{(1+q_1\ell _1'h_1'R_1^*+q_2\ell _2'h_2'R_2^*)^2}\). The characteristic polynomial is given by:

    $$\begin{aligned} P(\lambda )=\lambda ^4+A_3\lambda ^3+A_2\lambda ^2+A_1\lambda +A_0, \end{aligned}$$
    (25)

    where,

    $$\begin{aligned} A_3= & {} -(a_{11}+a_{22}); \\ A_2= & {} a_{11}a_{22}-a_{23}a_{32}-a_{12}a_{21}-a_{13}a_{31}-a_{24}a_{42}-a_{41}a_{14};\\ A_1= & {} a_{11}a_{23}a_{32}+a_{22}a_{13}a_{31}+a_{11}a_{42}a_{24}+a_{22}a_{41}a_{14}-a_{12}a_{31}a_{23}\\- & {} a_{13}a_{21}a_{32}-a_{14}a_{42}a_{21}-a_{41}a_{24}a_{12};\\ A_0= & {} a_{41}a_{32}a_{23}a_{14}+a_{42}a_{24}a_{13}a_{31}-a_{41}a_{32}a_{13}a_{24}-a_{42}a_{31}a_{14}a_{23}. \end{aligned}$$

    The coexisting equilibrium \(E^*\) is locally asymptotically stable if the Routh-Hurwitz conditions

    $$\begin{aligned} A_3>0; \;\; A_2>0; \;\; A_0>0 \;\; and \;\; A_1(A_3A_2-A_1)>A_3^2A_0 \end{aligned}$$

    are satisfied.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendy, A., Yatat-Djeumen, I.V., Lam, M. et al. Optimal Strategy in a Two Resources Two Consumers Grazing Model. Differ Equ Dyn Syst (2023). https://doi.org/10.1007/s12591-023-00647-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-023-00647-w

Keywords

Navigation