Skip to main content
Log in

A Mathematical Model for Phage Therapy with Impulsive Phage Dose

Model for Phage Therapy

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

An impulsively perturbed differential equation model for phage therapy has been proposed and investigated. A constant phage dose which accounts for impulse, is assumed to be given to the species (that can be a human, animal or crop) suffering from bacterial infection at specific interval of time. The linear stability analysis of resulting impulsive differential equation model have been carried out and critical values of phage dose (\(p_c\)) and time interval of dose (\(T_c\)) have been obtained for which the disease free equilibrium state is stable. The analysis therefore lead to two important conditions viz. \(p > p_c \) and \(T < T_c \), for which disease free equilibrium point can be made stable. These two parametric conditions thus obtained, give the conditions to completely eliminate bacterial disease. Numerical simulations carried out for resulting impulsive system also suggest that if phage dose and interval of dose satisfy the conditions \(p < p_c \) and \(T > T_c \) respectively, then system can have complex dynamical behavior and hence phage therapy may be ineffective. This useful conclusion can be used to explain as to why phage therapy fails sometime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abedon, S.T., Kuhl, S.J., Blasdel, B.G., Kutter, E.M.: Phage treatment of human infections. Bacteriophage 1(2), 66–85 (2011)

    Article  Google Scholar 

  2. Alisky, J., Iczkowski, K., Rapoport, A., Troitsky, N.: Bacteriophages show promise as antimicrobial agents. J. Infect. 36, 5–15 (1998)

    Article  Google Scholar 

  3. Aviram, I., Rabinovitch, A.: Bactria and lytic phage coexistence in a chemostat with periodic nutrient supply. Bull. Math. Biol. 76(1), 225–244 (2014)

    Article  MathSciNet  Google Scholar 

  4. Barrow, P., Lovell, M., Jr, A.B.: Use of lytic bacteriophage for control of experimental escherichia coli septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol. 5, 294–298 (1998)

    Article  Google Scholar 

  5. Barrow, P.A., Soothill, J.S.: Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends. Microbiol. 5, 268–271 (1997)

    Article  Google Scholar 

  6. Beretta, E., Kuang, Y.: Modeling and analysis of a marine bacteriophage infection. Math. Biosci. 149(1), 57–76 (1998)

    Article  MathSciNet  Google Scholar 

  7. Beretta, E., Kuang, Y.: Modeling and analysis of a marine bacteriophage infection with latency period. Nonlinear Anal. Real World Appl. 2(1), 35–74 (2001)

    Article  MathSciNet  Google Scholar 

  8. Campbell, A.: Conditions for the existence of bacteriophages. Evolution 15, 153–165 (1961)

    Article  Google Scholar 

  9. Gakkhar, S., Sahani, S.K.: A time delay model for bacteria bacteriophage interaction. J. Biol. Syst. 16(03), 445–461 (2008)

    Article  Google Scholar 

  10. Gourley, S.A., Kuang, Y.: A delay reaction-diffusion model of the spread of bacteriophage infection. SIAM J. Appl. Math. 65(2), 550–566 (2004)

    Article  MathSciNet  Google Scholar 

  11. Han, Z., Smith, H.L.: Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat. Math. Biosci. Eng. 9(4), 737–765 (2012)

    Article  MathSciNet  Google Scholar 

  12. Inal, J.M.: Phage therapy: a reappraisal of bacteriophages as antibiotics. Archivum Immunologiae Et Therapiae Experimentalis-English Edition 51(4), 237–244 (2003)

    Google Scholar 

  13. Jr, B., Lovell, M.A., Barrow, P.A.: The activity in the chicken alimentary tract of bacteriophages lytic for salmonella typhimurium. Res. Microbiol. 142, 541–549 (1991)

    Article  Google Scholar 

  14. Kasman, L.M., Kasman, A., Westwater, C., Dolan, J., Schmidt, M.G., Norris, J.S.: Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J. Virol. 76(11), 5557–5564 (2002)

    Article  Google Scholar 

  15. Kutateladze, M., Adamia, R.: Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 28(12), 591–595 (2010)

    Article  Google Scholar 

  16. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of impulsive differential equations. World Scientific, Singapore (1989)

    Book  Google Scholar 

  17. Lenski, R.E., Levin, B.R.: Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am. Nat. 125, 585–602 (1985)

    Article  Google Scholar 

  18. Levin, B.R., Bull, J.J.: Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am. Nat. 147, 881–898 (1996)

    Article  Google Scholar 

  19. Levin, B.R., Bull, J.J.: Population and evolutionary dynamics of phage therapy. Nat. Rev. Microbiol. 2(2), 166–173 (2004)

    Article  Google Scholar 

  20. Levin, B.R., Stewart, F.M., Chao, L.: Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Am. Nat. 111, 3–24 (1977)

    Article  Google Scholar 

  21. Matsuzaki, S., Rashel, M., Uchiyama, J., Sakurai, S., Ujihara, T., Kuroda, M., Ikeuchi, M., Tani, T., Fujieda, M., Wakiguchi, H., et al.: Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Chemother. 11(5), 211–219 (2005)

    Article  Google Scholar 

  22. Merril, C.R., Biswas, B., Carlton, R., Jensen, N.C., Creed, G.J., Zullo, S., Adhya, S.: Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. USA 93, 3188–3192 (1996)

    Article  Google Scholar 

  23. Nobrega, F.L., Costa, A.R., Kluskens, L.D., Azeredo, J.: Revisiting phage therapy: new applications for old resources. Trends Microbiol. 23(4), 185–191 (2015)

    Article  Google Scholar 

  24. Payne, R.J.H., Jansen, V.A.A.: Phage therapy: the peculiar kinetics of self-replicating pharmaceuticals. Clin. Pharmacol. Ther. 68, 225–230 (2000)

    Article  Google Scholar 

  25. Payne, R.J.H., Jansen, V.A.A.: Understanding bacteriophage therapy as a density-dependent kinetic process. J. Theor. Biol. 208, 37–48 (2001)

    Article  Google Scholar 

  26. Pires, D.P., Boas, D.V., Sillankorva, S., Azeredo, J.: Phage therapy: a step forward in the treatment of pseudomonas aeruginosa infections. Journal of virology pp. JVI–00,385 (2015)

  27. Rabinovitch, A., Aviram, I., Zaritsky, A.: Bacterial debris - an ecological mechanism for coexistence of bacteria and their viruses. J. Theor. Biol. 224(3), 377–383 (2003)

    Article  MathSciNet  Google Scholar 

  28. Ramesh, V., Fralick, J.A., Rolfe, R.D.: Prevention of clostridium difficile-induced ileocecitis with bacteriophage. Anaerobe 5, 69–78 (1999)

    Article  Google Scholar 

  29. Scanlan, P.D., Buckling, A., Hall, A.R.: Experimental evolution and bacterial resistance:(co) evolutionary costs and trade-offs as opportunities in phage therapy research. Bacteriophage (just-accepted), 00–00 (2015)

  30. Shulin, S., Cuihua, G.: Dynamics of a beddington-deangelis type predator-prey model with impulsive effect. J. Math. (2013)

  31. Smith, H.L.: Models of virulent phage growth with application to phage therapy. SIAM J. Appl. Math. 68(6), 1717–1737 (2008)

    Article  MathSciNet  Google Scholar 

  32. Smith, H.W., Huggins, M.B.: Successful treatment of experimental escherichia coli infections in mice using phage: its general superiority over antibiotics. J. Gen. Microbiol. 128, 307–318 (1982)

    Google Scholar 

  33. Smith, H.W., Huggins, M.B.: Effectiveness of phages in treating experimental escherichia coli diarrhoea in calves, piglets and lambs. J. Gen. Microbiol. 129, 2659–2675 (1983)

    Google Scholar 

  34. Smith, H.W., Huggins, M.B., Shaw, K.M.: The control of experimental escherichia coli diarrhoea in calves by means of bacteriophages. J. Gen. Microbiol. 133, 1111–1126 (1987)

    Google Scholar 

  35. Smith, H.W., Huggins, M.B., Shaw, K.M.: Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. J. Gen. Microbiol. 133, 1127–1135 (1987)

    Google Scholar 

  36. Soothill, J.S.: Treatment of experimental infections of mice with bacteriophages. J. Med. Microbiol. 37, 258–261 (1992)

    Article  Google Scholar 

  37. Soothill, J.S.: Bacteriophage prevents destruction of skin grafts by pseudomonas aeruginosa. Burns 20, 209–211 (1994)

    Article  Google Scholar 

  38. Soothill, J.S., Lawrence, J.C., Ayliffe, G.A.J.: The efficacy of phages in the prevention of the destruction of pig skin in vitro by pseudomonas aeruginosa. Med. Sci. Res. 16, 1287–1288 (1988)

    Google Scholar 

  39. Sulakvelidze, A., Alavidze, Z., Morris, J.G.: Bacteriophage therapy. Antimicrob. Agents. Chemother. 45(3), 649–659 (2001)

    Article  Google Scholar 

  40. Thieme, H.R.: Mathematics in population biology. Princeton University Press, USA (2003)

    Book  Google Scholar 

  41. Vidurupola, S.W., Allen, L.J.: Impact of variability in stochastic models of bacteria-phage dynamics applicable to phage therapy. Stoch. Anal. Appl. 32(3), 427–449 (2014)

    Article  MathSciNet  Google Scholar 

  42. Vieira, A., Silva, Y., Cunha, A., Gomes, N., Ackermann, H.W., Almeida, A.: Phage therapy to control multidrug-resistant pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments. Eur. J. Clin. Microbiol. Infect. Dis. 31(11), 3241–3249 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the efforts made by anonymous referees for critical readings of the manuscript which has greatly improved the quality of the contents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj Kumar Sahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahani, S.K., Gakkhar, S. A Mathematical Model for Phage Therapy with Impulsive Phage Dose. Differ Equ Dyn Syst 28, 75–86 (2020). https://doi.org/10.1007/s12591-016-0303-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0303-0

Keywords

Navigation