Skip to main content
Log in

Eogenetic Karst in Interbedded Carbonates and Evaporites and Its Impact on Hydrocarbon Reservoir: A New Case from Middle Triassic Leikoupo Formation in Sichuan Basin, Southwest China

  • Petroleum, Natural Gas Geology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Karst in interbedded carbonates and evaporites has been reported to have important and complex impacts on reservoir. It is significant for exploration and karst geology. Here, we report such a new case from Middle Triassic Leikoupo Formation of Sichuan Basin, Southwest China. Stratigraphic incompleteness and the occurrence of unconformity provide evidence for the presence of eogenetic karst. Under the impact of this eogenetic karst, residual weathered and solution-collapse breccia, solution pores and silicification and dedolomitization have been observed. Classic stratigraphic zonation of karst is not readily distinguishable, which is ascribed to the stratigraphic collapse of carbonate rocks resulting from the dissolution of evaporites by lateral subsurface fluid flow. In terms of impact on reservoir quality, karst can generally improve the initial physical property of the porous layers in theory. However, subsurface fluid flow dissolved the evarporitic beds and facilitated the collapse of overlying strata. As a consequence, the lateral continuity of the reservoirs would be destroyed, and relatively high-quality reservoirs can only be developed with little collapse of overlying strata, reflecting reservoir heterogeneities. This may be a general feature of reservoir formation under the impact of karst in interbedded carbonates and evaporites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Acosta, J. A., Faz, A., Jansen, B., et al., 2011. Assessment of Salinity Status in Intensively Cultivated Soils under Semiarid Climate, Murcia, SE Spain. Journal of Arid Environments, 75(11): 1056–1066. https://doi.org/10.1016/j.jaridenv.2011.05.006

    Google Scholar 

  • Agosta, F., Alessandroni, M., Antonellini, M., et al., 2010. From Fractures to Flow: A Field-Based Quantitative Analysis of an Outcropping Carbonate Reservoir. Tectonophysics, 490(3/4): 197–213. https://doi.org/10.1016/j.tecto.2010.05.005

    Google Scholar 

  • Altiner, D., Ömer Yilmaz, Ý., Özgül, N., et al., 1999. High-Resolution Sequence Stratigraphic Correlation in the Upper Jurassic (Kimmeridgian)-Upper Cretaceous (Cenomanian) Peritidal Carbonate Deposits (Western Taurides, Turkey). Geological Journal, 34(12): 139–158. https://doi.org/10.1002/(sici)1099-1034(199901/06)34:1/2<139::aid-gj818>3.3.co;2-z

    Google Scholar 

  • Amadi, F. O., Major, R. P., Baria, L. R., 2012. Origins of Gypsum in Deep Carbonate Reservoirs: Implications for Hydrocarbon Exploration and Production. AAPG Bulletin, 96(2): 375–390. https://doi.org/10.1306/05101110179

    Google Scholar 

  • Andreassen, K., Nilssen, E. G., Ødegaard, C. M., 2007. Analysis of Shallow Gas and Fluid Migration within the Plio-Pleistocene Sedimentary Succession of the SW Barents Sea Continental Margin Using 3D Seismic Data. Geo-Marine Letters, 27(2/3/4): 155–171. https://doi.org/10.1007/s00367-007-0071-5

    Google Scholar 

  • Berra, F., 2012. Sea-Level Fall, Carbonate Production, Rainy Days: How do they Relate? Insight from Triassic Carbonate Platforms (Western Tethys, Southern Alps, Italy). Geology, 40(3): 271–274. https://doi.org/10.1130/g32803.1

    Google Scholar 

  • Brenchley, P. J., Marshall, J. D., Harper, D. A. T., et al., 2006. A Late Ordovician (Hirnantian) Karstic Surface in a Submarine Channel, Recording Glacio-Eustatic Sea-Level Changes: Meifod, Central Wales. Geological Journal, 41(1): 1–22. https://doi.org/10.1002/gj.1029

    Google Scholar 

  • Burchette, T. P., Wright, V. P., Faulkner, T. J., 1990. Oolitic Sandbody Depositional Models and Geometries, Mississippian of Southwest Britain: Implications for Petroleum Exploration in Carbonate Ramp Settings. Sedimentary Geology, 68(1/2): 87–115. https://doi.org/10.1016/0037-0738(90)90121-9

    Google Scholar 

  • Cai, C. F., He, W. X., Jiang, L., et al., 2014. Petrological and Geochemical Constraints on Porosity Difference between Lower Triassic Sour- and Sweet-Gas Carbonate Reservoirs in the Sichuan Basin. Marine and Petroleum Geology, 56: 34–50. https://doi.org/10.1016/j.marpetgeo.2014.04.003

    Google Scholar 

  • Cao, Y. Q., Hu, K. R., 1988. A Preliminary Study on Karst Hydrochemical Field Modeling and Quantitative Evaluation of Erosion of Carbonate- Sulfate Formation. Journal of Changchun University of Earth Science, 18(1): 53–62 (in Chinese with English Abstract)

    Google Scholar 

  • Choi, B. Y., Yun, S. T., Mayer, B., et al., 2012. Hydrogeochemical Processes in Clastic Sedimentary Rocks, South Korea: A Natural Analogue Study of the Role of Dedolomitization in Geologic Carbon Storage. Chemical Geology, 306/307: 103–113. https://doi.org/10.1016/j.chemgeo.2012.03.002

    Google Scholar 

  • Choquette, P. W., Pray, L. C., 1970. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bulletin, 54(2): 207–250. https://doi.org/10.1306/5d25c98b-16c1-11d7-8645000102c1865d

    Google Scholar 

  • Cooper, A. H., 2002. Environmental Problems Caused by Gypsum Karst and Salt Karst in Great Britain. Carbonates and Evaporites, 17(2): 116–120. https://doi.org/10.1007/bf03176477

    Google Scholar 

  • De Meer, S., Spiers, C. J., Peach, C. J., 2000. Kinetics of Precipitation of Gypsum and Implications for Pressure—Solution Creep. Journal of the Geological Society, 157(2): 269–281. https://doi.org/10.1144/jgs.157.2.269

    Google Scholar 

  • Ding, X., Tan, X. C., Li, L., et al., 2015. Characteristics and Dominating Factors of Reservoirs in Leikoupo Formation, Southwest Sichuan Basin. Geoscience, 29(3): 644–652 (in Chinese with English Abstract)

    Google Scholar 

  • Eberli, G. P., Masaferro, J. L., Rick-Sarg, J. F., 2004. Seismic Imaging of Carbonate Reservoirs and Systems. AAPG Memoir, 81: 1–9

    Google Scholar 

  • Einsiedl, F., Mayer, B., 2005. Evidence for Bacterial Sulfate Reduction in a Fissured—Porous Karst System in Southern Germany. AGU Fall Meeting Abstracts. American Geophysical Union, December, 2005, San Francisco

    Google Scholar 

  • Feng, X. T., Ding, W. X., Zhang, D. X., 2009. Multi-Crack Interaction in Limestone Subject to Stress and Flow of Chemical Solutions. International Journal of Rock Mechanics and Mining Sciences, 46(1): 159–171. https://doi.org/10.1016/j.ijrmms.2008.08.001

    Google Scholar 

  • Ferket, H., Swennen, R., Ortuño Arzate, S., et al., 2006. Fluid Flow Evolution in Petroleum Reservoirs with a Complex Diagenetic History: An Example from Veracruz, Mexico. Journal of Geochemical Exploration, 89(1/2/3): 108–111. https://doi.org/10.1016/j.gexplo.2005.11.040

    Google Scholar 

  • Florea, L. J., Vacher, H. L., 2006. Springflow Hydrographs: Eogenetic vs. Telogenetic Karst. Ground Water, 44(3): 352–361. https://doi.org/10.1111/j.1745-6584.2005.00158.x

    Google Scholar 

  • Ford, D. C., 1989. Features of the Genesis of Jewel Cave and Wind Cave, Black Hills, South Dakota. National Speleological Society, 51(2): 100–110

    Google Scholar 

  • Gabrovšek, F., Dreybrodt, W., 2001. A Model of the Early Evolution of Karst Aquifers in Limestone in the Dimensions of Length and Depth. Journal of Hydrology, 240(3/4): 206–224. https://doi.org/10.1016/s0022-1694(00)00323-1

    Google Scholar 

  • Galve, J. P., Gutiérrez, F., Remondo, J., et al., 2009. Evaluating and Comparing Methods of Sinkhole Susceptibility Mapping in the Ebro Valley Evaporite Karst (NE Spain). Geomorphology, 111(3/4): 160–172. https://doi.org/10.1016/j.geomorph.2009.04.017

    Google Scholar 

  • Grime, J. P., 2006. Plant Strategies, Vegetation Processes, and Ecosystem Properties. John Wiley & Sons, Chichester. 403

    Google Scholar 

  • Guidry, S. A., Grasmueck, M., Carpenter, D. G., et al., 2007. Karst and Early Fracture Networks in Carbonates, Turks and Caicos Islands, British West Indies. Journal of Sedimentary Research, 77(6): 508–524. https://doi.org/10.2110/jsr.2007.052

    Google Scholar 

  • Gutiérrez, F., Calaforra, J. M., Cardona, F., et al., 2008. Geological and Environmental Implications of the Evaporite Karst in Spain. Environmental Geology, 53(5): 951–965. https://doi.org/10.1007/s00254-007-0721-y

    Google Scholar 

  • Gutiérrez, F., Linares, R., Roqué, C., et al., 2012. Investigating Gravitational Grabens Related to Lateral Spreading and Evaporite Dissolution Subsidence by Means of Detailed Mapping, Trenching, and Electrical Resistivity Tomography (Spanish Pyrenees). Lithosphere, 4(4): 331–353. https://doi.org/10.1130/l202.1

    Google Scholar 

  • Halbouty, M. T., Meyerhoff, A. A., King, R. E., et al., 1970. World’s Giant Oil and Gas Fields, Geologic Factors Affecting Their Formation, and Basin Classification: Part I: Giant Oil and Gas Fields. AAPG Special Volumes. 502–528

    Google Scholar 

  • Hammes, U., Lucia, F. J., Kerans, C., 1996. Reservoir Heterogeneity in Karst-Related Reservoirs: Lower Ordovician Ellenburger Group, West Texas. In: Stoudt, E. L., ed., Precambrian–Devonian Geology of the Franklin Mountains, West Texas—Analogs for Exploration and Production in Ordovician and Silurian Karsted Reservoirs in the Permian Basin. West Texas Geological Society, Midland TX. 99–117

    Google Scholar 

  • Hao, F., Zhang, X. F., Wang, C. W., et al., 2015. The Fate of CO2 Derived from Thermochemical Sulfate Reduction (TSR) and Effect of TSR on Carbonate Porosity and Permeability, Sichuan Basin, China. Earth-Science Reviews, 141: 154–177. https://doi.org/10.1016/j.earscirev.2014.12.001

    Google Scholar 

  • He, J., Fang, S. X., Hou, F. H., et al., 2013. Vertical Zonation of Weathered Crust Ancient Karst and Reservoir Evaluation and Prediction—A Case Study of M55-M51 Sub-Members of Majiagou Formation in Gas Fields, Central Ordos Basin, NW China. Petroleum Exploration and Development, 40(5): 572–581. https://doi.org/10.1016/s1876-3804(13)60075-0

    Google Scholar 

  • Heydari, E., 2000. Porosity Loss, Fluid Flow, and Mass Transfer in Limestone Reservoirs: Application to the Upper Jurassic Smackover Formation, Mississippi. AAPG Bulletin, 84(1): 100–118

    Google Scholar 

  • Hou, F. H., Fang, S. X., Shen, Z. G., et al., 2005. The Scale of Dolostone Bodies Palaeoweathering Karsting Hyperdiagenesis Exposure Phase. Marine Origin Petroleum Geology, 10(1): 19–30 (in Chinese with English Abstract)

    Google Scholar 

  • Hu, Z. S., Chen, Q. F., 1994. Paleo-Karst of the Lower Permian Carbonate Reservoir in the Southern Sichuan Basin and Its Relation to Natural Gas Accumulation. Natural Gas Geoscience, 23(5): 14–18 (in Chinese with English Abstract)

    Google Scholar 

  • Huang, J. Q., Ren, J. S., Jiang, C. F., et al., 1980. The Tectonics and Its Evolution of China. Science Press, Beijing. 124 (in Chinese)

    Google Scholar 

  • Johnson, K. S., 2005. Subsidence Hazards due to Evaporite Dissolution in the United States. Environmental Geology, 48(3): 395–409. https://doi.org/10.1007/s00254-005-1283-5

    Google Scholar 

  • Johnson, K. S., 2008. Evaporite-Karst Problems and Studies in the USA. Environmental Geology, 53(5): 937–943. https://doi.org/10.1007/s00254-007-0716-8

    Google Scholar 

  • Johnson, K. S., 2002. Evaporite Karst Problems in the United States. Geological Society of America, 34(6): 215

    Google Scholar 

  • Kalvoda, J., Kumpan, T., Bábek, O., et al., 2015. Upper Famennian and Lower Tournaisian Sections of the Moravian Karst (Moravo-Silesian Zone, Czech Republic): A Proposed Key Area for Correlation of the Conodont and Foraminiferal Zonations. Geological Journal, 50(1): 17–38. https://doi.org/10.1002/gj.2523

    Google Scholar 

  • Kenny, R., Krinsley, D. H., 1998. Silicified Micropeloid Structures from the 1.1 Ga Mescal Limestone, North-Central Arizona: Probable Evidence for Precambrian Terrigeneous Life. Mountain Geologist, 35: 45–54

    Google Scholar 

  • Klimchouk, A. B., Aksem, S. D., 2002. Gypsum Karst in the Western Ukraine: Hydrochemistry and Solution Rates. Carbonates and Evaporites, 17(2): 142–153. https://doi.org/10.1007/bf03176480

    Google Scholar 

  • Klimchouk, A., Cucchi, F., Calaforra, J., et al., 1996. Dissolution of Gypsum from Field Observations. International Journal of Speleology, 25(3/4): 37–48. https://doi.org/10.5038/1827-806x.25.3.3

    Google Scholar 

  • Kosa, E., Hunt, D. W., 2006. Heterogeneity in Fill and Properties of Karst-Modified Syndepositional Faults and Fractures: Upper Permian Capitan Platform, New Mexico, U.S.A. Journal of Sedimentary Research, 76(1): 131–151. https://doi.org/10.2110/jsr.2006.08

    Google Scholar 

  • Kuznetsov, V. G., Skobeleva, N. M., 2005. Silicification of Riphean Carbonate Sediments (Yurubcha-Tokhomo Zone, Siberian Craton). Lithology and Mineral Resources, 40(6): 552–563. https://doi.org/10.1007/s10987-005-0052-6

    Google Scholar 

  • Latinwo, G. K., Aribike, D. S., Susu, A. A., et al., 2010. Effects of Different Filler Treatments on the Morphology and Mechanical Properties of Flexible Polyurethane Foam Composites. Nature and Science, 8(6): 23–31

    Google Scholar 

  • Li, G. H., Li, X., Yang, X. N., 2000. Controlling Factors of Sinian Gas Pools in Caledonian Paleouplift, Sichuan Basin. Oil & Gas Geology, 21(2): 80–83 (in Chinese with English Abstract)

    Google Scholar 

  • Li, L., Tan, X. C., Ding, X., et al., 2011. Difference in Depositional Characteristics between Intra-Platform and Margional-Platform Shoals in Leikoupo Formation, Sichuan Basin and Its Impact on Reservoirs. Acta Petrolei Sinica, 32(1): 70–76 (in Chinese with English Abstract)

    Google Scholar 

  • Li, L., Tan, X. C., Zhou, S. Y., et al., 2012. Sequence Lithofacies Paleography of Leikoupo Formation, Sichuan Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 34(4): 13–22 (in Chinese with English Abstract)

    Google Scholar 

  • Li, Q. F., Miao, S. D., Li, Y. X., et al., 2018. Reservoir Characteristics and Genesis of the Changxing Formation on the Margin of Yanting-Tongnan Trough, Central Sichuan Basin. Earth Science, 43(10): 3553–3567. https://doi.org/10.3799/dqkx.2018.313 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, W. H., Zhang, D. W., Zhang, X. F., 2006. Influence of Hydrogenation and TSR (Thermochemical Sulfate Reduction) to Natural Gas Isotopic Composition. Acta Petrologica Sinica, 22(8): 2237–2242 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Y. K., Chang, X., 2003. Modeling of Burial and Subsidence History in Sichuan Basin. Chinese Journal of Geophysics, 46(2): 203–208 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Z. H., Dreybrodt, W., Li, H. J., 2006. Comparison of Dissolution Rate-Determining Mechanisms between Limestone and Dolomite. Earth Science—Journal of China University of Geosciences, 31(3): 411–416 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Z. H., Yuan, D. X., Dreybrodt, W., 2005. Comparative Study of Dissolution Rate-Determining Mechanisms of Limestone and Dolomite. Environmental Geology, 49(2): 274–279. https://doi.org/10.1007/s00254-005-0086-z

    Google Scholar 

  • Liu, Z. H., Dreybrodt, W., 2001. Dynamic Mechanism of Dolomite Solution under Different CO2 Partial Pressure. Science in China (Series B), 31(4): 377–384 (in Chinese)

    Google Scholar 

  • Lu, Y. R., Cooper, A. H., 1996. Gypsum Karst in China (in Gypsum Karst of the World). International Journal of Speleology, 25(3/4): 297–307

    Google Scholar 

  • Lu, Y. R., Zhang, F. E., Qi, J. X., et al., 2002a. Evaporite Karst and Resultant Geohazards in China. Carbonates and Evaporites, 17(2): 159–165. https://doi.org/10.1007/bf03176482

    Google Scholar 

  • Lu, Y. R., Zhang, F. E., Yan, B. R., et al., 2002b. Mechanism of Karst Development in Sulphate Rocks and Its Main Geo-Environmental Impacts. Acta Geosicientia Sinica, 23(1): 1–6 (in Chinese with English Abstract)

    Google Scholar 

  • Ma, Y. S., 2007. Generation Mechanism of Puguang Gas Field in Sichuan Basin. Acta Petrolei Sinica, 28(2): 9–21 (in Chinese with English Abstract)

    Google Scholar 

  • Ma, Z. F., 1994. Reservoir Characteristics of the Weathered Paleocrust in the Central Ordos Basin. Natural Gas Geoscience, 6(5): 28–36 (in Chinese with English Abstract)

    Google Scholar 

  • Ma, Z. F., Zhou, S. X., Yu, Z. P., et al., 1999. The Weathered Paleocrust on the Ordovician in Ordos Basin and Its Relationship to Gas Accumulation. Petroleum Exploration and Development, 26(5): 21–23 (in Chinese with English Abstract)

    Google Scholar 

  • Martinez, M. I., White, W. B., 1999. A Laboratory Investigation of the Relative Dissolution Rates of the Lirio Limestone and the Isla de Mona Dolomite and Implications for Cave and Karst Development on Isla de Mona. Journal of Cave and Karst Studies, 61(1): 7–12

    Google Scholar 

  • Mees, F., 2003. Salt Mineral Distribution Patterns in Soils of the Otjomongwa Pan, Namibia. Catena, 54(3): 425–437. https://doi.org/10.1016/s0341-8162(03)00135-8

    Google Scholar 

  • Meng, Q. R., Wang, E., Hu, J. M., 2005. Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin: Implication for Continued Clockwise Rotation of the South China Block. Geological Society of America Bulletin, 117(3): 396–410. https://doi.org/10.1130/b25407.1

    Google Scholar 

  • Meyers, W. J., 1988. Paleokarstic Features on Mississippian Limestone, New Mexico. In: James, N. P., Choquette, P. W., eds., Paleokarst. Springer-Verlag, New York. 306–328

    Google Scholar 

  • Négrel, P., Roy, S., Petelet-Giraud, E., et al., 2007. Long-Term Fluxes of Dissolved and Suspended Matter in the Ebro River Basin (Spain). Journal of Hydrology, 342(3/4): 249–260. https://doi.org/10.1016/j.jhydrol.2007.05.013

    Google Scholar 

  • Oblik, P. E. Z. R. K., Depresij, P., Grèiji, V., 2004. The Role of Epikarst in the Morphogenesis of the Karstic Forms in Greece and specially of the Karstic Hollow Forms. Acta Carsologica, 33(1): 219–235

    Google Scholar 

  • Paskauskas, R., Kucinskiene, A., Zvikas, A., 2005. Sulfate-Reducing Bacteria in Gypsum Karst Lakes of Northern Lithuania. Microbiology, 74(6): 715–721. https://doi.org/10.1007/s11021-005-0129-1

    Google Scholar 

  • Paukštys, B., Narbutas, V., 1996. Gypsum Karst of the Baltic Republics. International Journal of Speleology, 25(3/4): 279–284. https://doi.org/10.5038/1827-806x.25.3.21

    Google Scholar 

  • Rahimpour-Bonab, H., Esrafili-Dizaji, B., Tavakoli, V., 2010. Dolomitization and Anhydrite Precipitation in Permo-Triassic Carbonates at the South Pars Gasfield, Offshore Iran: Controls on Reservoir Quality. Journal of Petroleum Geology, 33(1): 43–66. https://doi.org/10.1111/j.1747-5457.2010.00463.x

    Google Scholar 

  • Rahimpour-Bonab, H., Mehrabi, H., Navidtalab, A., et al., 2012. Flow Unit Distribution and Reservoir Modelling in Cretaceous Carbonates of the Sarvak Formation, Abteymour Oilfield, Dezful Embayment, SW Iran. Journal of Petroleum Geology, 35(3): 213–236. https://doi.org/10.1111/j.1747-5457.2012.00527.x

    Google Scholar 

  • Ren, M. E., Liu, Z. Z., Wang, F. Y., et al., 1983. Karst Introduction. Commercial Press, Beijing (in Chinese)

    Google Scholar 

  • Sando, W. J., 1985. Revised Mississippian Time Scale, Western Interior Region, Conterminous United States. USGS Bulletin, 1605: A15–A26

    Google Scholar 

  • Sando, W. J., 1988. Madison Limestone (Mississippian) Paleokarst: A Geologic Synthesis. In: James, N. P., Choquette, P. W., Paleokarst. Springer-Verlag, New York. 256–277

    Google Scholar 

  • Shalev, E., Lyakhovsky, V., Yechieli, Y., 2006. Salt Dissolution and Sinkhole Formation along the Dead Sea Shore. Journal of Geophysical Research: Solid Earth, 111(B3): 1–12. https://doi.org/10.1029/2005jb004038

    Google Scholar 

  • Shen, A. J., Zhou, J. G., Xin, Y. G., et al., 2008. Origin of Triassic Leikoupo Dolostone Reservoirs in Sichuan Basin. Marine Origin Petroleum Geology, 13(4): 19–28 (in Chinese with English Abstract)

    Google Scholar 

  • Song, H. R., Huang, S. Y., 1998. Carbonate and Karst. Minerals and Rocks, 8(1): 9–17 (in Chinese with English Abstract)

    Google Scholar 

  • Song, W. Y., Liu, L. Q., Gan, X. Q., et al., 2012. Weathering Crust Karstification in Leikoupo Formation in Central Sichuan Area. Natural Gas Geoscience, 23(6): 1019–1024 (in Chinese with English Abstract)

    Google Scholar 

  • Surlyk, F., Hurst, J. M., Piasecki, S., et al., 1986. The Permian of the Western Margin of the Greenland Sea––A Future Exploration Target. In: Future Petroleum Provinces of the World. AAPG Special Volumes, M40: 629–659

    Google Scholar 

  • Sztanó, O., Krézsek, C., Magyar, I., et al., 2005. Sedimentary Cycles and Rhythms in a Sarmatian to Pannonian (Late Miocene) Transitional Section at Oarba de Mures/Marosorbó, Transylvanian Basin. Acta Geologica Hungarica, 48(3): 235–257. https://doi.org/10.1556/ageol.48.2005.3.1

    Google Scholar 

  • Trzhtsinsky, Y. B., 2002. Human-Induced Activation of Gypsum Karst in the Southern Priangaria (East Siberia, Russia). Carbonates and Evaporites, 17(2): 154–158. https://doi.org/10.1007/bf03176481

    Google Scholar 

  • Vacher, H. L., Mylroie, J. E., 2002. Eogenetic Karst from the Perspective of an Equivalent Porous Medium. Carbonates and Evaporites, 17(2): 182–196. https://doi.org/10.1007/bf03176484

    Google Scholar 

  • Wang, B. Q., Zhang, G. S., 2006. Diagenesis of Ordovician Paleo-Karst Reservoir in the Sulige Area, the Ordos Basin. Experimental Petroleum Geology, 28(6): 518–528 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, H. Y., Li, C., Hu, C. Y., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883–892. https://doi.org/10.1007/s12583-015-0650-3

    Google Scholar 

  • Wang, H., Liu, S. G., Qin, C., et al., 2009. Study on Petroleum Geological Conditions and Hydrocarbon Exploration Direction of Leikoupo Formation in the Centre and West of Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(6): 669–674 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Z. P., Lu, Z. Y., 2006. Important Role of Karstification in the Lower Permian Reservoir in Sichuan Basin. Petroleum Exploration and Development, 33(2): 141–144 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Z. S., Sha, Q. A., 1991. Solution-Collapse Brecciation of the Middle Ordovician Evaporates in North China. Scientia Geologica Sinica, (3): 246–254 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Z. Y., Li, L., Tan, X. C., et al., 2008. Types and Recognizable Indicators of Ordovician Carbonate Rock of Karstification in Tarim Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 30(5): 11–14 (in Chinese with English Abstract)

    Google Scholar 

  • Weidlich, O., 2010. Meteoric Diagenesis in Carbonates below Karst Unconformities: Heterogeneity and Control Factors. Geological Society, London, Special Publications, 329(1): 291–315. https://doi.org/10.1144/sp329.12

    Google Scholar 

  • Wu, J., Liu, S. G., Wang, G. Z., et al., 2016. Multi-Stage Hydrocarbon Accumulation and Formation Pressure Evolution in Sinian Dengying Formation-Cambrian Longwangmiao Formation, Gaoshiti-Moxi Structure, Sichuan Basin. Journal of Earth Science, 27(5): 835–845. https://doi.org/10.1007/s12583-016-0706-4

    Google Scholar 

  • Wu, S. X., Li, H. T., Long, S. X., et al., 2011. A Study on Characteristics and Diagenesis of Carbonate Reservoirs in the Middle Triassic Leikoupo Formation in Western Sichuan Depression. Oil & Gas Geology, 32(4): 542–559 (in Chinese with English Abstract)

    Google Scholar 

  • Xiao, D., Tan, X. C., Xi, A. H., et al., 2016. An Inland Facies-Controlled Eogenetic Karst of the Carbonate Reservoir in the Middle Permian Maokou Formation, Southern Sichuan Basin, SW China. Marine and Petroleum Geology, 72: 218–233. https://doi.org/10.1016/j.marpetgeo.2016.02.001

    Google Scholar 

  • Xing, F. C., Hu, H. R., Hou, M. C., et al., 2018. Carbonate Reservoirs Cycles and Assemblages under the Tectonic and Palaeogeography Control: A Case Study from Sichuan Basin. Earth Science, 43(10): 3540–3552. https://doi.org/10.3799/dqkx.2018.310 (in Chinese with English Abstract)

    Google Scholar 

  • Xu, H. L., Wei, G. Q., Jia, C. Z., et al., 2012. Tectonic Evolution of the Leshan-Longnüsi Paleo-Uplift and Its Control on Gas Accumulation in the Sinian Strata. Petroleum Exploration and Development, 39(4): 436–446. https://doi.org/10.1016/s1876-3804(12)60060-3

    Google Scholar 

  • Yang, X. F., Tang, H., Wang, X. Z., et al., 2017. Dolomitization by Penesaline Sea Water in Early Cambrian Longwangmiao Formation, Central Sichuan Basin, China. Journal of Earth Science, 28(2): 305–314. https://doi.org/10.1007/s12583-017-0761-5

    Google Scholar 

  • Youssef, M., El-Sorogy, A. S., 2015. Paleoecology of Benthic Foraminifera in Coral Reefs Recorded in the Jurassic Tuwaiq Mountain Formation of the Khashm Al-Qaddiyah Area, Central Saudi Arabia. Journal of Earth Science, 26(2): 224–235. https://doi.org/10.1007/s12583-015-0529-8

    Google Scholar 

  • Yuste, A., Bauluz, B., Mayayo, M. J., 2015. Genesis and Mineral Transformations in Lower Cretaceous Karst Bauxites (NE Spain): Climatic Influence and Superimposed Processes. Geological Journal, 50(6): 839–857. https://doi.org/10.1002/gj.2604

    Google Scholar 

  • Zeng, D. M., Wang, X. Z., Zhang, F., et al., 2007. Study on Reservoir of the Leikoupo Formation of Middle Triassic in Northwestern Sichuan Basin. Journal of Palaeogeography, 9(3): 253–266 (in Chinese with English Abstract)

    Google Scholar 

  • Zhai, G. M., 1989. Chinese Petroleum Geology (Vol. 10, Sichuan Oil and Gas Areas). Petroleum Industry Press, Beijing (in Chinese)

    Google Scholar 

  • Zhang, F. E., Lu, Y. R., 2001. Experimental Study on the Mechanism of Sulphate Karst. Hydrogeology and Engineering Geology, 5: 12–16 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, F. E., Lu, Y. R., Guo, X. H., et al., 2003. The Mechanism Related to the Formation of Compound Karstification. Earth Science Frontiers, 10(2): 495–500 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, J. Q., Geng, A. Q., Chen, H. D., et al., 1992. Paleokarst-Related Natural Gas Reservoirs of Majiagou Formation, Ordos Basin. Journal of Chengdu College of Geology, 19(4): 65–70 (in Chinese with English Abstract)

    Google Scholar 

  • Zhao, Q. X., 1991. The Unconformity between the Upper Triassic Xujiahe and Lower Triassic Leikoupo Formations Based on the Field Survey in the Nanshancun Outcrop. Acta Geologica Sichuan, 11(4): 310–311 (in Chinese with English Abstract)

    Google Scholar 

  • Zhao, R., Wu, Y. S., Jiang, H. X., et al., 2017. Oxygen Isotope Clue to Migration of Dolomitizing Fluid as Exampled by the Changxing Formation Dolomite at Panlongdong, Northeastern Sichuan. Journal of Earth Science, 28(2): 333–346. https://doi.org/10.1007/s12583-017-0724-x

    Google Scholar 

  • Zhao, W. Z., Shen, A. J., Pan, W. Q., et al., 2013. A Research on Carbonate Karst Reservoirs Classification and Its Implication on Hydrocarbon Exploration: Cases Studies from Tarim Basin. Acta Petrologica Sinica, 29(9): 3213–3222 (in Chinese with English Abstract)

    Google Scholar 

  • Zhong, Y. J., Chen, H. D., Lin, L. B., et al., 2011. Paleokarstification and Reservoir Distribution in the Middle Triassic Carbonates of the 4th Member of the Leikoupo Fornation, Northeastern Sichuan Basin. Acta Petrologica Sinica, 27(8): 2272–2280 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou, W., Deng, H. C., Qiu, D. Z., et al., 2007. The Discovery and Significance of the Devonian Paleo-Reservoir in Tianjingshan Structure of the Northwest Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 34(4): 413–417 (in Chinese with English Abstract)

    Google Scholar 

  • Zhu, C. Q., Qiu, N. S., Cao, H. Y., et al., 2016. Paleogeothermal Reconstruction and Thermal Evolution Modeling of Source Rocks in the Puguang Gas Field, Northeastern Sichuan Basin. Journal of Earth Science, 27(5): 796–806. https://doi.org/10.1007/s12583-016-0909-8

    Google Scholar 

  • Zhu, C. Q., Rao, S., Xu, M., et al., 2011. The Mesozoic Thermal Regime of the Sichuan Basin and the Relationship between It and the Structural and Sedimentary Action of the Foreland Basin Evolution. Chinese Journal of Geology, 46(1): 194–202 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

We sincerely thank anonymous reviewers for their constructive comments, which are helpful to improve the article substantially. We thank the editors for technical handling and editing of this manuscript. This work was funded by the “13th Five-Year Plan” National Science and Technology Major Project of China (No. 2016ZX05004002). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-0888-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiucheng Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Tan, X., Li, L. et al. Eogenetic Karst in Interbedded Carbonates and Evaporites and Its Impact on Hydrocarbon Reservoir: A New Case from Middle Triassic Leikoupo Formation in Sichuan Basin, Southwest China. J. Earth Sci. 30, 908–923 (2019). https://doi.org/10.1007/s12583-019-0888-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-019-0888-7

Key words

Navigation