Skip to main content
Log in

Experimental study of the adsorption-induced coal matrix swelling and its impact on ECBM

  • Articles
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) enhanced coalbed methane (ECBM) is an effective method to improve methane (CH4) production and this technology has already been used to increase gas production in several field trials worldwide. One major problem is the injection drop in the later period due to permeability decrease caused by coal matrix swelling induced by CO2 injection. In order to quantify the swelling effect, in this work, coal samples were collected from the Bulli coal seam, Sydney Basin and adsorption tests with simultaneous matrix swelling measurement were conducted. The adsorption and swelling characteristics were analyzed by measuring the adsorption mass simultaneously with the strain measurement. Then experiments were conducted to replicate the ECBM process using the indirect gravity method to obtain the swelling strain change with CO2 injection. The results show that the coal adsorption capacity in CO2 is almost two times greater than that in CH4, and nitrogen adsorption is the least among these gases. A Langmuir-like model can be used to describe the strain with the gas pressure and the swelling strain induced by gas adsorption has a linear relationship with gas adsorption quantity. Moreover, swelling strain increase was observed when CO2 was injected into the sample cell and the swelling strain was almost the sum of the strains induced by different gases at corresponding partial gas pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Anggara, F., Sasaki, K., Sugai, Y., 2016. The Correlation between Coal Swelling and Permeability during CO2 Sequestration: A Case Study Using Kushiro Low Rank Coals. International Journal of Coal Geology, 166: 62–70. doi:10.1016/j.coal.2016.08.020

    Article  Google Scholar 

  • Chen, G. Q., Yang, J. L., Liu, Z. Y., 2012. Method for Simultaneous Measure of Sorption and Swelling of the Block Coal under High Gas Pressure. Energy & Fuels, 26(7): 4583–4589. doi:10.1021/ef3001168

    Article  Google Scholar 

  • Day, S., Fry, R., Sakurovs, R., 2008. Swelling of Australian Coals in Supercritical CO2. International Journal of Coal Geology, 74(1): 41–52. doi:10.1016/j.coal.2007.09.006

    Article  Google Scholar 

  • Day, S., Fry, R., Sakurovs, R., 2012. Swelling of Coal in Carbon Dioxide, Methane and Their Mixtures. International Journal of Coal Geology, 93: 40–48. doi:10.1016/j.coal.2012.01.008

    Article  Google Scholar 

  • Dudzińska, A., 2017. Sorption Properties of Hard Coals with Regard to Gases Present in the Mine Atmosphere. Journal of Earth Science, 28(1): 124–130. doi:10.1007/s12583-016-0716-2

    Article  Google Scholar 

  • Fujioka, M., Yamaguchi, S., Nako, M., 2010. CO2-ECBM Field Tests in the Ishikari Coal Basin of Japan. International Journal of Coal Geology, 82(3/4): 287–298. doi:10.1016/j.coal.2010.01.004

    Article  Google Scholar 

  • George, J. D., Barakat, M. A., 2001. The Change in Effective Stress Associated with Shrinkage from Gas Desorption in Coal. International Journal of Coal Geology, 45(2/3): 105–113. doi:10.1016/s0166-5162(00)00026-4

    Article  Google Scholar 

  • Gunter, W. D., Gentzis, T., Rottenfusser, B. A., et al., 1997. Deep Coalbed Methane in Alberta, Canada: A Fuel Resource with the Potential of Zero Greenhouse Gas Emissions. Energy Conversion and Management, 38: S217–S222. doi:10.1016/s0196-8904(96)00272-5

    Article  Google Scholar 

  • Guo, X., Wang, Z. M., Zhao, Y. L., 2016. A Comprehensive Model for the Prediction of Coal Swelling Induced by Methane and Carbon Dioxide Adsorption. Journal of Natural Gas Science and Engineering, 36: 563–572. doi:10.13039/501100001809

    Article  Google Scholar 

  • Han, F. S., Chen, G. Q., Liu, Z. Y., et al., 2017. Correlation of Swelling and Sorption Properties of Block Coal Sample. Fuel, 188: 452–461. doi:10.13039/501100001809

    Article  Google Scholar 

  • Harpalani, S., Mitra, A., 2010. Impact of CO2 Injection on Flow Behavior of Coalbed Methane Reservoirs. Transport in Porous Media, 82(1): 141–156. doi:10.1007/s11242-009-9475-1

    Article  Google Scholar 

  • Harpalani, S., Schraufnagel, R. A., 1990. Shrinkage of Coal Matrix with Release of Gas and Its Impact on Permeability of Coal. Fuel, 69(5): 551–556. doi:10.1016/0016-2361(90)90137-f

    Article  Google Scholar 

  • Jaeger, J. C., Cook, N. G., Zimmerman, R., 2009. Fundamentals of Rock Mechanics. John Wiley & Sons, New York

    Google Scholar 

  • Jin, K., Cheng, Y. P., Liu, Q. Q., et al., 2016. Experimental Investigation of Pore Structure Damage in Pulverized Coal: Implications for Methane Adsorption and Diffusion Characteristics. Energy & Fuels, 30(12): 10383–10395. doi:10.13039/501100004608

    Article  Google Scholar 

  • Krooss, B. M., van Bergen, F., Gensterblum, Y., et al., 2002. High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals. International Journal of Coal Geology, 51(2): 69–92. doi:10.1016/s0166-5162(02)00078-2

    Article  Google Scholar 

  • Liu, Q. Q., Cheng, Y. P., Ren, T., et al., 2016. Experimental Observations of Matrix Swelling Area Propagation on Permeability Evolution Using Natural and Reconstituted Samples. Journal of Natural Gas Science and Engineering, 34: 680–688. doi:10.13039/501100002858

    Article  Google Scholar 

  • Majewska, Z., Majewski, S., Ziętek, J., 2010. Swelling of Coal Induced by Cyclic Sorption/Desorption of Gas: Experimental Observations Indicating Changes in Coal Structure due to Sorption of CO2 and CH4. International Journal of Coal Geology, 83(4): 475–483. doi:10.1016/j.coal.2010.07.001

    Article  Google Scholar 

  • Mazumder, S., Wolf, K. H. A. A., van Hemert, P., et al., 2008. Laboratory Experiments on Environmental Friendly Means to Improve Coalbed Methane Production by Carbon Dioxide/Flue Gas Injection. Transport in Porous Media, 75(1): 63–92. doi:10.1007/s11242-008-9222-z

    Article  Google Scholar 

  • Olajossy, A., 2017. Some Parameters of Coal Methane System that Cause very Slow Release of Methane from Virgin Coal Beds (CBM). International Journal of Mining Science and Technology, 27(2): 321–326. doi:10.1016/j.ijmst.2017.01.006

    Article  Google Scholar 

  • Palmer, I., Mansoori, J., 1998. How Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model. SPE Reservoir Evaluation & Engineering, 1(6): 539–544. doi:10.2118/52607-pa

    Article  Google Scholar 

  • Pan, Z. J., Connell, L. D., 2007. A Theoretical Model for Gas Adsorption-Induced Coal Swelling. International Journal of Coal Geology, 69(4): 243–252. doi:10.1016/j.coal.2006.04.006

    Article  Google Scholar 

  • Pan, Z. J., Connell, L. D., 2012. Modelling Permeability for Coal Reservoirs: A Review of Analytical Models and Testing Data. International Journal of Coal Geology, 92: 1–44. doi:10.1016/j.coal.2011.12.009

    Article  Google Scholar 

  • Pini, R., Ottiger, S., Storti, G., et al., 2009. Pure and Competitive Adsorption of CO2, CH4 and N2 on Coal for ECBM. Energy Procedia, 1(1): 1705–1710. doi:10.1016/j.egypro.2009.01.223

    Article  Google Scholar 

  • Puri, R., Yee, D., 1990. Enhanced Coalbed Methane Recovery. SPE Annual Technical Conference and Exhibition, Sep. 23rd–26th, 1990, New Orleans

    Book  Google Scholar 

  • Ranathunga, A. S., Perera, M. S. A., Ranjith, P. G., et al., 2017. An Experimental Investigation of Applicability of CO2 Enhanced Coal Bed Methane Recovery to Low Rank Coal. Fuel, 189: 391–399. doi:10.13039/501100000923

    Article  Google Scholar 

  • Reeves, S., Oudinot, A., 2004. The Tiffany Unit N2-ECBM Pilot: A Reservoir Modeling Study. U.S. Department of Energy Topical Report, Washinton DC. DE-FC26-0NT40924

    Book  Google Scholar 

  • Shi, J.-Q., Durucan, S., 2004. Drawdown Induced Changes in Permeability of Coalbeds: A New Interpretation of the Reservoir Response to Primary Recovery. Transport in Porous Media, 56(1): 1–16. doi:10.1023/b:tipm.0000018398.19928.5a

    Article  Google Scholar 

  • Shi, J.-Q., Durucan, S., 2008. Modelling of Mixed-Gas Adsorption and Diffusion in Coalbed Reservoirs. SPE Unconventional Reservoirs Conference, Sep. 23–26, 2008, Keystone

    Book  Google Scholar 

  • Shi, J.-Q., Pan, Z. J., Durucan, S., 2014. Analytical Models for Coal Permeability Changes during Coalbed Methane Recovery: Model Comparison and Performance Evaluation. International Journal of Coal Geology, 136: 17–24. doi:10.1016/j.coal.2014.10.004

    Article  Google Scholar 

  • Tang, S. H., Wan, Y., Duan, L. J., et al., 2015. Methane Adsorption-Induced Coal Swelling Measured with an Optical Method. International Journal of Mining Science and Technology, 25(6): 949–953. doi:10.13039/501100001809

    Article  Google Scholar 

  • Vishal, V., Singh, T. N., Ranjith, P. G., 2015. Influence of Sorption Time in CO2-ECBM Process in Indian Coals Using Coupled Numerical Simulation. Fuel, 139: 51–58. doi:10.1016/j.fuel.2014.08.009

    Article  Google Scholar 

  • Wang, G. D., Ren, T., Wang, K., et al., 2014. Influence of Maximum Pressure on the Path of CO2 Desorption Isotherm on Coal. Energy & Fuels, 28(11): 7093–7096. doi:10.13039/501100001809

    Article  Google Scholar 

  • Wang, K., Wang, G. D., Ren, T., et al., 2014. Methane and CO2 Sorption Hysteresis on Coal: A Critical Review. International Journal of Coal Geology, 132: 60–80. doi:10.13039/501100004543

    Article  Google Scholar 

  • Wang, Y. C., Wang, S. M., Xue, S., et al., 2015. Numerical Modeling of Porous Flow in Fractured Rock and Its Applications in Geothermal Energy Extraction. Journal of Earth Science, 26(1): 20–27. doi:10.1007/s12583-015-0507-1

    Article  Google Scholar 

  • Wen, Z., Liu, K., Chen, X., 2015. Approximate Analytical Solutions for Two-Region Non-Darcian Flow to a Partially Penetrationg Well. Earth Science, 40(5): 918–924 (in Chinese with English Abstract)

    Google Scholar 

  • White, C. M., Smith, D. H., Jones, K. L., et al., 2005. Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane Recovery: A Review. Energy & Fuels, 19(3): 659–724. doi:10.1021/ef040047w

    Article  Google Scholar 

  • Zang, J., Wang, K., Zhao, Y. X., 2015. Evaluation of Gas Sorption-Induced Internal Swelling in Coal. Fuel, 143: 165–172. doi:10.13039/501100001809

    Article  Google Scholar 

  • Zhang, L., Luo, J., Cui, G., et al., 2016. Mechanisms of Cold Shock during Coalbed Fracturing Assisted with Cryogenic Gases. Earth Science, 41(4): 664–674 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

The first author would like to thank the China Scholarship Council (CSC), China, and the University of Wollongong (UOW), Australia for funding his study in Australia. The authors also thank the technical staff in UOW, especially the laboratory technicians Alan Grant, Duncan Best, Richard Berndt. This work was supported by the Australian Coal Industry’s Research Program (No. ACARP C24019), the National Natural Science Foundation of China (No. 51604153), and the National Science and Technology Major Project (No. 2016ZX05045-004-006). The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0778-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Ren, T., Wang, G. et al. Experimental study of the adsorption-induced coal matrix swelling and its impact on ECBM. J. Earth Sci. 28, 917–925 (2017). https://doi.org/10.1007/s12583-017-0778-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0778-9

Key Words

Navigation