Skip to main content
Log in

Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Blood flow patterns and local hemodynamic parameters have been widely associated with the onset and progression of atherosclerosis in the carotid artery. Assessment of these parameters can be performed noninvasively using cine phase-contrast (PC) magnetic resonance imaging (MRI). In addition, in the last two decades, computational fluid dynamics (CFD) simulation in three dimensional models derived from anatomic medical images has been employed to investigate the blood flow in the carotid artery. This study developed a workflow of a subject-specific CFD analysis using MRI to enhance estimating hemodynamics of the carotid artery. Time-of-flight MRI scans were used to construct three-dimensional computational models. PC-MRI measurements were utilized to impose the boundary condition at the inlet and a 0-dimensional lumped parameter model was employed for the outflow boundary condition. The choice of different viscosity models of blood flow as a source of uncertainty was studied, by means of the axial velocity, wall shear stress, and oscillatory shear index. The sequence of workflow in CFD analysis was optimized for a healthy subject using PC-MRI. Then, a patient with carotid artery stenosis and its hemodynamic parameters were examined. The simulations indicated that the lumped parameter model used at the outlet gives physiologically reasonable values of hemodynamic parameters. Moreover, the dependence of hemodynamics parameters on the viscosity models was observed to vary for different geometries. Other factors, however, may be required for a more accurate CFD analysis, such as the segmentation and smoothness of the geometrical model, mechanical properties of the artery’s wall, and the prescribed velocity profile at the inlet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ku, D.N., Giddens, D.P., Zarins, C.K., Glagov, S.: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol. 5, 293–302 (1985)

    Article  Google Scholar 

  2. Marshall, I., Zhao, S., Papathanasopoulou, P., Hoskins, P., Xu, Y.: MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J. Biomech. 37, 679–687 (2004)

    Article  Google Scholar 

  3. Yim, P., Demarco, K.J., Castro, M.A., Cebral, J.: Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics. Stud. Health Technol. Inform. 113, 412–442 (2005)

    Google Scholar 

  4. Bluestein, D., Alemu, Y., Avrahami, I., Gharib, M., Dumont, K., Ricotta, J.J., Einav, S.: Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J. Biomech. 41, 1111–1118 (2008)

    Article  Google Scholar 

  5. Papathanasopoulou, P., Zhao, S., Köhler, U., Robertson, M.B., Long, Q., Hoskins, P., Xu, X., Marshall, I.: MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J. Magn. Reson. Imaging 17, 153–162 (2003)

    Article  Google Scholar 

  6. Caro, C.G., Fitz-Gerald, J.M., Schroter, R.C.: Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. B Biol. Sci. 177, 109–133 (1971)

    Article  Google Scholar 

  7. Giddens, D.P., Zarins, C.K., Glagov, S.: The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng. 115, 588–594 (1993)

    Article  Google Scholar 

  8. Moore Jr, J.E., Xu, C., Glagov, S., Zarins, C.K., Ku, D.N.: Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis”. Atherosclerosis 110, 225–240 (1994)

    Article  Google Scholar 

  9. Oshinski, J.N., Ku, D.N., Mukundan, S., Loth, F., Pettigrew, R.I.: Determination of wall shear stress in the aorta with the use of MR phase velocity mapping. J. Magn. Reson. Imaging 5, 640–647 (1995)

    Article  Google Scholar 

  10. Suzuki, J., Shimamoto, R., Nishikawa, J., Tomaru, T., Nakajima, Nakamura, K., Shin, W.S., Toyo-oka, T.: Vector analysis of the hemodynamics of atherogenesis in the human thoracic aorta using MR velocity mapping. Am. J. Roentgenol. 171, 1285–1290 (1998)

    Article  Google Scholar 

  11. Oyre, S., Ringgaard, S., Kozerke, S., Paaske, W.P., Scheidegger, M.B., Boesiger, P., Pedersen, E.M.: Quantitation of circumferential subpixel vessel wall position and wall shear stress by multiple sectored three-dimensional paraboloid modeling of velocity encoded cine MR. Magn. Reson. Med. 40(5), 645–655 (1998)

    Article  Google Scholar 

  12. Shibeshi, S.S., Collins, W.E.: The rheology of blood flow in a branched arterial system. Appl. Rheol. 15(6), 398–405 (2005)

    Google Scholar 

  13. Vignon-Clementel, I.E., Figueroa, C.A., Jansen, K.E., Taylor, C.A.: Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Eng. 13, 625–640 (2010)

    Article  Google Scholar 

  14. Moyle, K.R., Antiga, L., Steinman, D.A.: Inlet conditions for image-based CFD models of the carotid bifurcation: Is it reasonable to assume fully developed flow? J. Biomech. Eng. 128(3), 371–379 (2006)

    Article  Google Scholar 

  15. Gijsen, F.J., Allanic, E., van de Vosse, F.N., Janssen, J.D.: The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 degrees curved tube. J. Biomech. 32(7), 705–713 (1999)

    Article  Google Scholar 

  16. Cho, Y.I., Kensey, K.R.: Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 28, 241–262 (1991)

    Google Scholar 

  17. Nobile, F., Vergara, C.: An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30(2), 731–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Thomas, J.B., Milner, J.S., Rutt, B.K., Steinman, D.A.: Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann. Biomed. Eng. 31(2), 132–141 (2003)

    Article  Google Scholar 

  19. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36, 81–121 (2004)

    Article  Google Scholar 

  20. Sharma, N., Aggarwal, L.M.: Automated medical image segmentation techniques. J. Med. Phys. 35, 3–14 (2010)

    Article  Google Scholar 

  21. Taylor, C.A., Draney, M.T.: Experimental and computational methods in cardiovascular fluid mechanics. Annu. Rev. Fluid Mech. 36, 197–231 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Olufsen, M.S., Peskin, C.S., Kim, W.Y., Pedersen, E.M., Nadim, A., Larsen, J.: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28, 1281–1299 (2000)

    Article  Google Scholar 

  23. Formaggia, L., Gerbeau, J.F., Nobile, F., Quarteroni, A.: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6–7), 561–582 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Laganà, K., Dubini, G., Migliavacca, F., Pietrabissa, R., Pennati, G., Veneziani, A., Quarteroni, A.: Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39(3–4), 359–364 (2002)

    Google Scholar 

  25. Wan, J., Steele, B., Spicer, S.A., Strohband, S., Feijóo, G.R., Hughes, T.J.R., Taylor, C.A.: A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease. Comput. Methods Biomech. Biomed. Eng. 5, 195–206 (2002)

    Article  Google Scholar 

  26. de Pater, L., van den Berg, J.: An electrical analogue of the entire human circulatory system. Med. Electron. Biol. Eng. 2, 161–166 (1964)

    Article  Google Scholar 

  27. Shi, Y., Lawford, P., Hose, R.: Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. OnLine. 10, 33–71 (2011)

    Article  Google Scholar 

  28. Johnston, B.M., Johnston, P.R., Corney, S., Kilpatrick, D.: Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech. 37, 709–720 (2004)

    Article  Google Scholar 

  29. Evju, Ø., Valen-Sendstad, K., Mardal, K.A.: A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions. J. Biomech. 46, 2802–2808 (2013)

    Article  Google Scholar 

  30. Steinman, D.A.: Assumptions in modelling of large artery hemodynamics. In: Ambrosi, D., Quarteroni, A., Rozza, G. (eds) Modeling of physiological flows, pp. 1–18. Springer, Milan (2012)

  31. Hussain, M.A., Kar, S., Puniyani, R.R.: Relationship between power law coefficients and major blood constituents affecting the whole blood viscosity. J. Biosci. 24(3), 329–337 (1999)

    Article  Google Scholar 

  32. Venkatesan, J., Sankar, D.S., Hemalatha, K., Yatim, Y.: Mathematical analysis of Casson fluid model for blood rheology in stenosed narrow arteries. J. Appl. Math. 2013, 1–11, Art. ID 583809 (2013)

  33. Biasetti, J., Gasser, T.C., Auer, M., Hedin, U., Labruto, F.: Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanism. Ann. Biomed. Eng. 38(2), 380–390 (2010)

    Article  Google Scholar 

  34. Zhang, G.: Computational Bioengineering. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  35. Lee, S.W., Antiga, L., Steinman, D.A.: Correlations among indicators of disturbed flow at the normal carotid bifurcation. J. Biomech. Eng. 131, 1013–1020 (2009)

    Article  Google Scholar 

  36. Wu, S.P., Ringgaard, S., Oyre, S., Hansen, M.S., Rasmus, S., Pedersen, E.M.: Wall shear rates differ between the normal carotid, femoral, and brachial arteries: an in vivo MRI study. J. Magn. Reson. Imaging 19, 188–193 (2004)

    Article  Google Scholar 

  37. Vignon-Clementel, I.E., Figueroa, C.A., Jansen, K.E., Taylor, C.A.: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195, 3776–3796 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cibis, M., Potters, W.V., Gijsen, F.J.H., Marquering, H., vanBavel, E., van der Steen, A.F.W., Nederveen, A.J., Wentzel, J.J.: Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: a comparison study in healthy carotid arteries. NMR Biomed. 27, 826–834 (2014)

    Article  Google Scholar 

  39. Steinman, D.A., Thomas, J.B., Ladak, H.M., Milner, J.S., Rutt, B.K., Spence, J.D.: Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47, 149–159 (2002)

    Article  Google Scholar 

  40. Hirata, K., Yaginuma, T., O’Rourke, M.F., Kawakami, M.: Age-related changes in carotid artery flow and pressure pulses possible implications for cerebral microvascular disease. Stroke 37, 2552–2556 (2006)

    Article  Google Scholar 

  41. Lee, S.H., Kang, S., Hur, N., Jeong, S.K.: A fluid-structure interaction analysis on hemodynamics in carotid artery based on patient-specific clinical data. J. Mech. Sci. Technol. 26(3821), 31 (2013)

    Google Scholar 

  42. Nandakumar, N., Sahu, K.C., Anand, M.: Pulsatile flow of a shear-thinning model for blood through a two-dimensional stenosed channel. Eur. J. Mech. Bfluids 49, 29–35 (2015)

    Article  MathSciNet  Google Scholar 

  43. Boussel, L., Rayz, V., Martin, A., Acevedo-Bolton, G., Lawton, M.T., Higashida, R., Smith, W.S., Young, W.L., Saloner, D.: Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn. Reson. Med. 61, 409–417 (2009)

    Article  Google Scholar 

  44. Morbiducci, U., Gallo, D., Massai, D., Ponzini, R., Deriu, M.A., Antiga, L., Redaelli, A., Montevecchi, F.M.: On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. J. Biomech. 44(13), 2427–2438 (2011)

    Article  Google Scholar 

  45. Lee, S.W., Steinman, D.A.: On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J. Biomech. Eng. 129, 273–278 (2006)

    Article  Google Scholar 

  46. Yiallourou, T.I., Kröger, J.R., Stergiopulos, N., Maintz, D., Martin, B.A., Bunck, A.C.: Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine. PLoS One 7, 1–13 (2012)

    Article  Google Scholar 

  47. Figueroa, C.A., Vignon-Clementel, I.E., Jansen, K.E., Hughes, T.J.R., Taylor, C.A.: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195, 5685–5706 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Alastruey, J., Parker, K.H., Peiró, J., Byrd, S.M., Sherwin, S.J.: Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech. 40, 1794–1805 (2007)

    Article  Google Scholar 

  49. Xiao, N., Humphrey, J.D., Figueroa, C.A.: Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. J. Comput. Phys. 244, 22–40 (2013)

    Article  MathSciNet  Google Scholar 

  50. Shipkowitz, T., Rodgers, V.G.J., Frazin, L.J., Chandran, K.B.: Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches. J. Biomech. 33(6), 717–728 (2000)

    Article  Google Scholar 

  51. Hoi, Y., Wasserman, B.A., Lakatta, E.G., Steinman, D.A.: Effect of common carotid artery inlet length on normal carotid bifurcation hemodynamics. J. Biomech. Eng. 132(12), 1–6 (2010)

    Article  Google Scholar 

  52. Wake, A.K., Oshinski, J.N., Tannenbaum, A.R., Giddens, D.P.: Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation. J. Biomech. Eng. 131(2), 1–8 (2009)

    Article  Google Scholar 

  53. Gallo, D., Steinman, D.A., Morbiducci, U.: An insight into the mechanistic role of the common carotid artery on the hemodynamics at the carotid bifurcation. Ann. Biomed. Eng. 43(1), 68–81 (2014)

    Article  Google Scholar 

  54. Balossino, R., Pennati, G., Migliavacca, F., Formaggia, L., Veneziani, A., Tuveri, M., Dubin, G.: Computational models to predict stenosis growth in carotid arteries: Which is the role of boundary conditions? Comput. Methods Biomech. Biomed. Eng. 12(1), 113–123 (2009)

    Article  Google Scholar 

  55. Jacobsen, B.K., Eggen, A.E., Mathiesen, E.B., Wilsgaard, T., Njølstad, I.: Cohort profile: the Tromso study. Int. J. Epidemiol. 41, 961–967 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the support, in part, by the National Heart, Lung, and Blood Institute of the National Institutes of Health (R21HL113857) and National Science Foundation (CMMI-1150376). The contents of solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Authors would also like to gratefully acknowledge Simmetrix, Inc. (http://www.simmetrix.com) for offering software licensing of the MeshSim mesh generation library, and Dr. Nathan Wilson for offering SimVascular software package and his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungik Baek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharahi, H., Zambrano, B.A., Zhu, D.C. et al. Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. Int J Adv Eng Sci Appl Math 8, 46–60 (2016). https://doi.org/10.1007/s12572-016-0161-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-016-0161-6

Keywords

Navigation