Skip to main content
Log in

Porous metallic structures for orthopaedic applications: a short review of materials and technologies

  • Original Article
  • Published:
European Orthopaedics and Traumatology

Abstract

Introduction

Porous structures already have a wide range of applications in almost every modern sector of science, from catalysis to structural applications. Due to the possibility to easily tailor porosity and mechanical properties, porous structures also found application in the orthopaedic field, in particular to improve osteointegration properties of implants.

Discussion

Different techniques were developed or adapted to obtain a good combination of mechanical strength, pore dimensions and Young’s modulus, without neglecting biocompatibility and corrosion resistance. The aim of this work is to summarise and compare the most important characteristics of the technologies currently used for the production of commercial orthopaedic porous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Weber JN, White EW (1972) Carbon-metal graded composites for permanent osseous attachment of non-porous metals. Mater Res Bull 7(9):1005–1016

    Article  CAS  Google Scholar 

  2. Robertson DM, Pierre L, Chahal R (1976) Preliminary observation of bone ingrowth into porous materials. J Biomed Mater Res 10:335–344

    Article  CAS  PubMed  Google Scholar 

  3. Turner IG (2009) Biomedical materials. In: Narayan R (ed) Glasses and glass ceramics. Springer, New York

  4. Lu JX, Flautre B, Anseelme K, Hardouin P, Gallur A, Descamps M, Thiery B (1999) Role of interconnections in porous bioceramics on bone recolonisation in vitro and in vivo. J Mater Sci Mater Med 10:111–120

    Article  CAS  PubMed  Google Scholar 

  5. Jacobs JJ, Gilbert JL, Urban RM (1998) Corrosion of metal orthopaedic implants. J Bone Joint Surg Am 80:268–282

    CAS  PubMed  Google Scholar 

  6. Pizoferrato A, Vespucci A, Ciapetti G, Stea S (1985) Biocompatibility testing of prosthetic implant materials by cell cultures. Biomaterials 6(5):346–351

    Article  Google Scholar 

  7. Ryan G, Pandit A, Apatsidis DP (2005) Fabrication methods of porous metal for use in orthopaedic application. Biomaterials 27:2651–2670

    Article  Google Scholar 

  8. Levine B (2008) A new era in porous metals: applications in orthopaedics. Adv Eng Mater 10:788–792

    Article  CAS  Google Scholar 

  9. Marin E, Fusi S, Pressacco M, Paussa L, Fedrizzi L (2010) Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: trabecular titanium. J Mech Behav Biomed Mater 3:373–381

    Article  CAS  PubMed  Google Scholar 

  10. Lefebvre LP, Banhart J, Dunand DC (2008) Porous metals and metallic foams: current status and recent developments. Adv Eng Mater 10(9):775–787

    Article  CAS  Google Scholar 

  11. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T (2005) Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials 26:6014–6023

    Article  CAS  PubMed  Google Scholar 

  12. Lugscheider E, Lu P, Hauser B, Jager D (1987) Optimized vacuum plasma-sprayed titanium coatings. Surf Coat Technol 32:215–226

    Article  CAS  Google Scholar 

  13. Parthasarathy J, Starly B, Raman S, Christensen A (2010) Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater 3:249–259

    Article  PubMed  Google Scholar 

  14. Harrysson LA, Censizoglu O, Marcellin-Little DJ, Cormier DR, West HA II (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C 28:366–373

    Article  CAS  Google Scholar 

  15. Manley MT, Kotzar G, Stern LS, Wilde A (1987) Effects of repetitive loading on the integrity of porous coatings. Clin Orthop Relat Res 217:293–302

    Google Scholar 

  16. Boccaccini AR, Ondracek G, Mombello E (1996) Determination of stress concentration factors in porous materials. J Mater Sci Lett 15:534–536

    CAS  Google Scholar 

  17. Frosh KH, Barvencik F, Viereck V, Lohmann CH, Dresing K, Breme J, Brunner E, Sturmen KM (2004) Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J Biomed Mater Res 68A(2):325–334

    Article  Google Scholar 

  18. Reclaru L, Eschler PY, Lerf R, Blatter A (2005) Electrochemical corrosion and metal ion release from Co–Cr–Mo prosthesis with titanium plasma spray coating. Biomaterials 26:4747–4756

    Article  CAS  PubMed  Google Scholar 

  19. Reclaru L, Lerf R, Eschler PY, Blatter A, Meyer Pitting JM (2002) Crevice and galvanic corrosion of REX stainless-steel/CoCr orthopedic implant material. Biomaterials 23(16):3479–3485

    Article  CAS  PubMed  Google Scholar 

  20. Bundy KJ, Williams CJ, Luedemann RE (1991) Stress-enhanced ion release—the effect of static loading. Biomaterials 12:627–639

    Article  CAS  PubMed  Google Scholar 

  21. Exley C, Birchall JD (1992) The cellular toxicity of aluminium. J Theor Biol 159:83–98

    Article  CAS  PubMed  Google Scholar 

  22. Evans EJ, Thomas IT (1986) The in vitro toxicity of cobalt–chrome–molybdenum alloys and its constituent metals. Biomaterials 7:25–29

    Article  CAS  PubMed  Google Scholar 

  23. Marchetti P, Binazzi R, Vaccari V, Girolami M, Morici F, Imapllomeni C, Commessatti M, Silvello L (2005) Long-term results with cementless Fitek (or Fitmore) cups. J Arthroplast 20:730–737

    Article  Google Scholar 

  24. Unger AS, Lewis RJ, Gruen T (2005) Evaluation of a porous tantalum uncemented acetabular cup in revision total hip arthroplasty clinical and radiological results of 60 hips. J Arthroplast 20:1002–1009

    Article  Google Scholar 

  25. Helm AT, Kerin C, Ghalayini SRA, McLauchlan GJ (2009) Preliminary results of an uncemented trabecular metal tibial component in total knee arthroplasty. J Arthroplast 24:941–944

    Article  Google Scholar 

  26. Sholz J, Hubalek D, Osel J, Hoptner C (2001) Fifteen to seventeen year follow-up of the uncemented spongiosa metal surface (SMS) total hip arthroplasty. IBMS/ECTS 2001 Program and Abstracts

  27. Mallory TH, Head WC, Lombardi AV, Emerson RH, Eberle RW, Mitchell MB (2005) Clinical and radiographic outcome of a cementless, titanium, plasma spray-coated total hip arthroplasty femoral component justification for continuance of use. J Arthroplast 11:653–660

    Article  Google Scholar 

  28. Frenkel SR, Jaffe WL, Dimaano F, Iesaka K, Hua T (2004) Bone response to a novel highly porous surface in a canine implantable chamber. Journal of Biomedical Materials Research Part B: Applied Biomaterials 71b:387-391

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elia Marin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marin, E., Fedrizzi, L. & Zagra, L. Porous metallic structures for orthopaedic applications: a short review of materials and technologies. Eur Orthop Traumatol 1, 103–109 (2010). https://doi.org/10.1007/s12570-010-0020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12570-010-0020-z

Keywords

Navigation