Skip to main content
Log in

An academic approach to the multidisciplinary development of liquid-oxygen turbopumps for space applications

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Since 2015, the Technical University of Munich and the German Aerospace Center have intensified their research on liquid-oxygen turbopumps for space propulsion applications in a joined project. Together, they concentrate on the special challenges concerning the design, construction and operation of parts of turbopumps, as well as the development and validation of tools to interpret and predict the aforementioned. This is accompanied by experimental works on the level of components of the pump, the bearing unit and seals. Alongside this, numerical tools are used which have been developed both commercially and at the Technical University of Munich. The research combines the expertise of several institutes in the fields of space propulsion, applied mechanics, rotordynamics and numerical mechanics in a multidisciplinary approach. The incorporation of student and doctoral theses allows for the investigation of the components of liquid-oxygen turbopumps in a very wide variety. High emphasis is put on the interaction between the turbopump subsystems. The present paper presents the work on each subsystem and the links between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Keller, R.B. Jr., Jakobsen, J.K.: Liquid rocket engine turbopump inducers. NASA SP-8052. NASA Space Vehicle Design Criteria (Chemical Propulsion). National Aeronautics and Space Administration, Lewis Research Center, Design Criteria Office, Cleveland, OH, USA (1971). Available from NTRS

  2. Bissel, W.R., Douglass, H.W., Sobin, A.J.: Turbopump systems for liquid rocket engines. NASA SP-8107. NASA Space Vehicle Design Criteria (Chemical Propulsion). National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, USA (1974). Available from NTRS

  3. Veggi, L., Pauw, J.D., Wagner, B., Haidn, O.J.: A study on the design of LOx turbopump inducers. In: 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Maui, HI, USA (2017)

  4. Aungier, R.H.: Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis. ASME, New York (2006)

    Book  Google Scholar 

  5. Ehrlich, D.A., Schwille, J., Welle, R.P., Murdock, J.W., Hardy, B. S.: A water test facility for liquid rocket engine turbopump cavitation testing. In: Proceedings of the 7th International Symposium on Cavitation CAV2009, Ann Arbor, Michigan, USA (2009)

  6. Rapposelli, E., Cervone, A., Bramanti, C., d’Agostino, L.: A new cavitation test facility at centrospazio. In: 4th International Conference on Launcher Technology. Space Launcher Liquid Propulsion, Liège, Belgium (2002)

  7. Pace, G., Pasini, A., Torre, L., Valentini, D., d’Agostino, L.: The cavitating pump rotordynamic test facility at ALTA S.p.A.: upgraded capabilities of a unique test rig. In: Space Propulsion, Bordeaux, France (2012)

  8. Rapposelli, E., Cervone, A., d’Agostino, L.: A new cavitating pump rotordynamic test facility. AIAA 2002–4285. In: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, IN, USA (2002)

  9. Pauw, J.D., Veggi, L., Wagner, B., Mondal, J., Klotz, M., Haidn, O.J.: Design procedure of a turbopump test bench. In: 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Maui, HI, USA (2017)

  10. Gülich, J.F.: Centrifugal Pumps. Springer, Berlin (2010)

    Book  Google Scholar 

  11. Brennen, C.E.: Hydrodynamics of Pumps. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  12. Kenneth, E., Nichols, P.E.: How to select turbomachinery for your application. https://www.barber-nichols.com/sites/default/files/wysiwyg/images/how_to_select_turbomachinery_for_your_application.pdf. Accessed 14 Sept 2016

  13. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford Engineering Science Series, vol. 44. Oxford University Press, New York (1995)

    Google Scholar 

  14. Ehrlich, D.A., Murdock, J.W.: A dimensionless scaling parameter for thermal effects on cavitation in turbopump inducers. J. Fluids Eng. 137(4), 41103 (2015)

    Article  Google Scholar 

  15. Muller, S., van de Wyer, N., Souverein, L.: POGO unstationnary cavitation modelling of space rocket turbopumps based on water tests. In: SpacePropulsion, Rome, Italy (2016)

  16. Carter, T.A. Jr., Crusan, C.R., Thodal, F.: Comparison and correlation of centrifugal pump cavitation. Adv. Cryogenic Eng. 1960(4), 255–263

  17. Cervone, A., Bramanti, C., Rapposelli, E., d’Agostino, L.: Cavitation experiments on turbopump inducers and hydrofoils at alta/centrospazio: overview and future activities. In: ASME 2005 Fluids Engineering Division Summer Meeting, Houston, TX, USA, pp. 1247–1256 (2005)

  18. Cervone, A., Bramanti, C., Rapposelli, E., d’Agostino, L.: Thermal cavitation experiments on a NACA 0015 hydrofoil. J. Fluids Eng. 128, 326–331 (2006)

    Article  Google Scholar 

  19. Childs, D.: Transient rotordynamic analysis for the space-shuttle main engine high-pressure oxygen turbopump. In: 10th Propulsion Conference, San Diego, CA, USA (1974)

  20. Gasch, R., Nordmann, R., Pfützner, H.: Rotordynamik. Springer, Berlin (2002)

    Book  Google Scholar 

  21. Harris, T.A.: Rolling Bearing Analysis, 3rd edn. Wiley, New York (1991)

    Google Scholar 

  22. Wagner, C., Krinner, A., Thümmel, T., Rixen, D.: Full dynamic ball bearing model with elastic outer ring for high speed applications. Lubricants 5(2), 17 (2017)

    Article  Google Scholar 

  23. Muszyńska, A.: Rotordynamics. Mechanical Engineering, vol. 188. Taylor & Francis, Boca Raton (2005)

    MATH  Google Scholar 

  24. Wagner, C., Tsunoda, W., Berninger, T., Thümmel, T., Rixen, D.: Instability prediction and rotordynamic with seals: simulations based on the bulk-flow theory and experimental measurements. In: Proceedings of the XVII International Symposium on Dynamic Problems of Mechanics, Sao Sebastiao, Brazil (2017)

  25. Wagner, C., Tsunoda, W., Matsushita, O., Berninger, T., Thümmel, T., Rixen, D.: Prediction of instability in rotor-seal systems using forward whirl magnetic bearing excitation. Technische Mechanik 37(2–5), 358–366 (2017)

    Google Scholar 

  26. Vuong, A.-T., Yoshihara, L., Wall, W.A.: A general approach for modeling interacting flow through porous media under finite deformations. Comput. Methods Appl. Mech. Eng. 283, 1240–1259 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schott, B., Wall, W.A.: A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 276, 233–265 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: CutFEM. Discretizing geometry and partial differential equations. Int. J. Numer. Meth. Engng. 104(7), 472–501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ager, C., Schott, B., Winter, M., Wall, W.A.: A Nitsche-based cut finite element method for the coupling of incompressible fluid flow with poroelasticity, arXiv preprint arXiv:1808.05900 (2018)

  30. Hüeber, S., Stadler, G., Wohlmuth, B.I.: A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction. SIAM J. Sci. Comput. 30(2), 572–596 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Popp, A., Gitterle, M., Gee, M.W., Wall, W.A.: A dual mortar approach for 3D finite deformation contact with consistent linearization. Int. J. Numer. Meth. Engng. 83(11), 1428–1465 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ager, C., Schott, B., Vuong, A.-T., Popp, A., Wall, W.A.: A consistent approach for fluid-structure-contact interaction based on a porous flow model for rough surface contact, arXiv preprint arXiv:1809.04004 (2018)

  33. Wagner, B., Stampfl, A., Beck, P., Veggi, L., Pauw, J.D., Kitsche, W.: Untersuchungen zu Sekundärsystemen in Turbopumpen für Flüssigkeitsraketenantriebe. In: Deutscher Luft- und Raumfahrtkongess, Braunschweig, Germany (2016)

  34. Beck, P.A., Wagner, B., Haidn, O.: The influence of secondary flow in the thrust acting on the axis of a radial LOx pumps. In: 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, Stockholm, Sweden (2017)

  35. Wagner, B., Veggi, L., Pauw, J.D.: Assessment of performance variation on the axial and radial forces in turbopump configurations for liquid rocket engines. In: 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Maui, HI, USA (2017)

  36. Maier, S., Wagner, B., Veggi, L., Pauw, J.D., Beck, P.A.: Analytical and numerical assessment of axial thrust balancing systems in liquid rocket engine LOx turbopumps. In: 7th European Conference for Aeronautics and Space Sciences, Milano, Italy (2017)

  37. Bartel, D.: Simulation von Tribosystemen. Grundlagen und Anwendungen. Vieweg + Teubner Verlag/GWV Fachverlage GmbH, Wiesbaden (2010)

    Book  Google Scholar 

Download references

Acknowledgements

This project is supported by the Ludwig Bölkow Campus, funded by the Bavarian government. The authors greatly appreciate the good cooperation with the consortium partners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian D. Pauw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauw, J.D., Veggi, L., Haidn, O.J. et al. An academic approach to the multidisciplinary development of liquid-oxygen turbopumps for space applications. CEAS Space J 11, 193–203 (2019). https://doi.org/10.1007/s12567-018-0228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-018-0228-2

Keywords

Navigation