Skip to main content

Advertisement

Log in

Spontaneous polyploidization in critically endangered Acipenser mikadoi

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

We investigated the source of spontaneous polyploidization in the critically endangered Acipenser mikadoi. Fourteen sib progeny of A. mikadoi and 11 hybrids between an A. mikadoi female and a Huso dauricus male, all showing atypically high ploidy, were analysed. Parent assignment based on five highly polymorphic microsatellite markers confirmed spontaneous duplication of maternal chromosome sets via retention of the second polar body to be the source of spontaneous polyploidization. To our knowledge, this provides the first evidence of the maternal origin of spontaneous polyploidization in A. mikadoi. Factorial correspondence analysis of the multilocus microsatellite genotypes placed the parent fish of spontaneous polyploids in clearly delineated clusters of A. mikadoi and H. dauricus, and parent fish had mitochondrial control region haplotypes corresponding to their presumed species. Thus, parent fish were confirmed to be of pure genetic origin, and hybridization did not promote the observed spontaneous polyploidization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3a, b

Similar content being viewed by others

References

  1. Vasiľev VP (2009) Mechanisms of polyploid evolution in fish: polyploidy in sturgeons. In: Carmona R et al (eds) Biology, conservation and sustainable development of sturgeons. Springer Science, the Netherlands, pp 97–117

    Google Scholar 

  2. Birstein VJ, Poletaev AI, Goncharov BF (1993) DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry 14:377–383

    Article  CAS  PubMed  Google Scholar 

  3. Hardie DC, Hebert PD (2003) The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome 46:683–706

    Article  CAS  PubMed  Google Scholar 

  4. Birstein VJ, Hanner R, Desalle R (1997) Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ Biol Fishes 48:127–155

    Article  Google Scholar 

  5. Fontana F, Zane L, Pepe A, Congiu L (2007) Polyploidy in Acipenseriformes: cytogenetic and molecular approaches. In: Pisano E et al (eds) Fish cytogenetic. Science Publisher, NH, pp 385–403

    Google Scholar 

  6. Havelka M, Hulák M, Bailie DA, Prodöhl PA, Flajšhans M (2013) Extensive genome duplications in sturgeons: new evidence from microsatellite data. J Appl Ichthyol 29:704–708

    Article  Google Scholar 

  7. Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I (2001) Genome duplication events and functional reduction of ploidy levels in sturgeon. (Acipenser, Huso and Scaphirhynchus). Genetics 158:1203–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vasil’ev VP, Vasil’eva ED, Shedko SV, Novomodny GV (2009) Ploidy levels in the kaluga, Huso dauricus and Sakhalin sturgeon Acipenser mikadoi (Acipenseridae, Pisces). Dokl Biol Sci 426:228–231

    Article  PubMed  Google Scholar 

  9. Zhou H, Fujimoto T, Adachi S, Abe S, Yamaha E, Arai K (2013) Molecular cytogenetic study on the ploidy status in Acipenser mikadoi. J Appl Ichthyol 29:51–55

    Article  CAS  Google Scholar 

  10. Zhou H, Fujimoto T, Adachi S, Yamaha E, Arai K (2011) Genome size variation estimated by flow cytometry in Acipenser mikadoi, Huso dauricus in relation to other species of Acipenseriformes. J Appl Ichthyol 27:484–491

    Article  CAS  Google Scholar 

  11. Bemis WE, Kynard B (1997) Sturgeon rivers: an introduction to acipenseriform biogeography and life history. Environ Biol Fishes 48:167–184

    Article  Google Scholar 

  12. Shilin NI (1995) Programme for conservation of Acipenser medirostris mikadoi in the Russian Far East. In: Gershanovich AD, Smith TIJ (eds) Proceedings of the International Sturgeon Symposium. VNIRO, Moscow, pp 262–267

  13. Okada Y (1995) Fishes of Japan: illustrations and descriptions of fishes of Japan. Maruzen, Tokyo

    Google Scholar 

  14. Shmigirilov AP, Mednikova AA, Israel JA (2007) Comparison of biology of the Sakhalin sturgeon, Amur sturgeon, and kaluga from the Amur River, Sea of Okhotsk, and Sea of Japan biogeographic province. Environ Biol Fishes 79:383–395

    Article  Google Scholar 

  15. Drauch Schreier A, Gille D, Mahardja B, May B (2011) Neutral markers confirm the octoploid origin and reveal spontaneous autopolyploidy in white sturgeon, Acipenser transmontanus. J Appl Ichthyol 27:24–33

    Article  Google Scholar 

  16. Gille DA, Famula TR, May BP, Schreier AD (2015) Evidence for a maternal origin of spontaneous autopolyploidy in cultured white sturgeon (Acipenser transmontanus). Aquaculture 435:467–474

    Article  Google Scholar 

  17. Havelka M, Bytyutskyy D, Symonová R, Ráb P, Flajšhans M (2016) The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet Sel Evol 48:12

    Article  PubMed  PubMed Central  Google Scholar 

  18. Havelka M, Hulák M, Ráb P, Rábová M, Lieckfeldt D, Ludwig A, Rodina M, Gela D, Pšenička M, Bytyutskyy D, Flajšhans M (2014) Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genet 15:5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Havelka M, Hulák M, Rodina M, Flajšhans M (2013) First evidence of autotriploidization in sterlet (Acipenser ruthenus). J Appl Genet 54:201–207

    Article  CAS  PubMed  Google Scholar 

  20. Omoto N, Maebayashi M, Adachi S, Arai K, Yamauchi K (2005) The influence of oocyte maturational stage on hatching and triploidy rates in hybrid (bester) sturgeon Huso huso × Acipenser ruthenus. Aquaculture 245:287–294

    Article  Google Scholar 

  21. Schreier AD, May B, Gille DA (2013) Incidence of spontaneous autopolyploidy in cultured populations of white sturgeon, Acipenser transmontanus. Aquaculture 416:141–145

    Article  Google Scholar 

  22. Omoto N, Maebayashi M, Hara A, Adachi S, Yamauchi K (2004) Gonadal maturity in wild sturgeons, Huso dauricus, Acipenser mikadoi and A. schrenckii caught near Hokkaido, Japan. Environ Biol Fishes 70:381–391

    Article  Google Scholar 

  23. Mugue NS, Barmintseva AE, Rastorguev SM, Mugue VN, Barminstev VA (2008) Polymorphism of the mitochondrial DNA control region in eight sturgeon species and development of a system for DNA-based species identification. Russ J Genet 44:793–798

    Article  CAS  Google Scholar 

  24. Bork K, Drauch A, Israel JA, Pedroia J, Rodzen J, May B (2008) Development of new microsatellite primers for green and white sturgeon. Conserv Genet 9:973–979

    Article  CAS  Google Scholar 

  25. May B, Krueger CC, Kincaid HL (1997) Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can J Fish Aquat Sci 54:1542–1547

    Article  CAS  Google Scholar 

  26. King TL, Lubinski BA, Spidle AP (2001) Microsatellite DNA variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Conserv Genet 2:103–119

    Article  CAS  Google Scholar 

  27. McQuown EC, Sloze BL, Sheehan RJ, Rodzen J, Tranah GJ, May B (2000) Microsatellite analysis of genetic variation in sturgeon (Acipenseridae): new primer sequences for Scaphirhynchus and Acipenser. Trans Am Fish Soc 129:1380–1388

    Article  CAS  Google Scholar 

  28. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rodzen JA, Famula TR, May B (2004) Estimation of parentage and relatedness in the polyploid white sturgeon (Acipenser transmontanus) using a dominant marker approach for duplicated microsatellite loci. Aquaculture 232:165–182

    Article  Google Scholar 

  30. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hasegawa M, Kishino H, Yano TA (1985) Dating of the human ape splitting by a molecular clock of mitochondrial-DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  33. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France

  36. Dudu A, Suciu R, Paraschiv M, Georgescu SE, Costache M, Berrebi P (2011) Nuclear markers of Danube sturgeons hybridization. Int J Mol Sci 12:6796–6809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jenneckens I, Meyer JN, Debus L, Pitra C, Ludwig A (2000) Evidence of mitochondrial DNA clones of Siberian sturgeon, Acipenser baerii, within Russian sturgeon, Acipenser gueldenstaedtii, caught in the River Volga. Ecol Lett 3:503–508

    Article  Google Scholar 

  38. Ludwig A, Lippold S, Debus L, Reinartz R (2009) First evidence of hybridization between endangered starlets (Acipenser ruthenus) and exotic Siberian sturgeons (Acipenser baerii) in the Danube River. Biol Invasions 11:753–760

    Article  Google Scholar 

  39. Tranah G, Campton DE, May B (2004) Genetic evidence for hybridization of pallid and shovelnose sturgeon. J Hered 95:474–480

    Article  CAS  PubMed  Google Scholar 

  40. Bronzi P, Rosenthal H, Gessner J (2011) Global sturgeon aquaculture production: an overview. J Appl Ichthyol 27:169–175

    Article  Google Scholar 

  41. Zhang XM, Wu WH, Li LM, Ma XF, Chen JP (2013) Genetic variation and relationships of seven sturgeon species and ten interspecific hybrids. Genet Sel Evol 45:21

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vasil’ev VP, Rachek EI, Lebedeva EB, Vasil’eva ED (2014) Karyological study in backcross hybrids between the sterlet, Acipenser ruthenus, and kaluga, A. dauricus (Actinopterygii: Acipenseriformes: Acipenseridae): A. ruthenus × (A. ruthenus × A. dauricus) and A. dauricus × (A. ruthenus × A. dauricus). Acta Ichthyol Pisc 44:301–308

    Article  Google Scholar 

  43. Azuma N, Hagihara S, Ichimura M, Takagi Y, Ura K, Adachi S (2016) Genetic characterization of Amur sturgeon Acipenser schrenckii and its hybrid caught around Hokkaido. Ichthyol Res 64:139–144

    Article  Google Scholar 

  44. Piferrer F, Beaumont A, Falguiere JC, Flajshans M, Haffray P, Colombo L (2009) Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293:125–156

    Article  Google Scholar 

  45. Krieger J, Hett AK, Fuerst PA, Artyukhin E, Ludwig A (2008) The molecular phylogeny of the order Acipenseriformes revisited. J Appl Ichthyol 24:36–45

    Article  Google Scholar 

  46. Peng ZG, Ludwig A, Wang DQ, Diogo R, Wei QW, He SP (2007) Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes). Mol Phylogen Evol 42:854–862

    Article  CAS  Google Scholar 

  47. Birstein VJ, Doukakis P, DeSalle R (2000) Polyphyly of mtDNA lineages in the Russian sturgeon, Acipenser gueldenstaedtii: forensic and evolutionary implications. Conserv Genet 1:81–88

    Article  CAS  Google Scholar 

  48. Braasch I, Postlethwait JH (2012) Polyploidy in fish and the teleost genome duplication. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, Berlin, pp 341–383

    Chapter  Google Scholar 

  49. Arai K, Fujimoto T (2013) Genomic constitution and atypical reproduction in polyploid and unisexual lineages of the Misgurnus loach, a teleost fish. Cytogenet Genome Res 140:226–240

    Article  CAS  PubMed  Google Scholar 

  50. Itono M, Morishima K, Fujimoto T, Bando E, Yamaha E, Arai K (2006) Premeiotic endomitosis produces diploid eggs in the natural clone loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae). J Exp Zool Part A 305A:513–523

    Article  CAS  Google Scholar 

  51. Kobayasi H (1976) A cytological study on the maturation division in the oogenic process of the triploid ginbuta (Carassius auratus langsdorfii). Jpn J Ichthyol 76:234–240

    Google Scholar 

  52. Shimizu Y, Shibata N, Sakaizumi M, Yamashita M (2000) Production of diploid eggs through premeiotic endomitosis in the hybrid medaka between Oryzias latipes and O. curvinotus. Zool Sci 17:951–958

    Article  Google Scholar 

  53. Yamashita M, Jiang JQ, Onozato H, Nakanishi T, Nagahama Y (1993) A tripolar spindle formed at meiosis-I assures the retention of the original ploidy in the gynogenetic triploid Crucian carp, Ginbuna Carassius auratus langsdorfii. Dev Growth Differ 35:631–636

    Article  Google Scholar 

  54. Yoshikawa H, Morishima K, Fujimoto T, Saito T, Kobayashi T, Yamaha E, Arai K (2009) Chromosome doubling in early spermatogonia produces diploid spermatozoa in a natural clonal fish. Biol Reprod 80:973–979

    Article  CAS  PubMed  Google Scholar 

  55. Aegerter S, Jalabert B (2004) Effects of post-ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout, Oncorhynchus mykiss. Aquaculture 231:59–71

    Article  Google Scholar 

  56. Flajšhans M, Kohlmann K, Ráb P (2007) Autotriploid tench Tinca tinca (L.) larvae obtained by fertilization of eggs previously subjected to postovulatory ageing in vitro and in vivo. J Fish Biol 71:868–876

    Article  Google Scholar 

  57. Nomura K, Takeda Y, Unuma T, Morishima K, Tanaka H, Arai K, Ohta H (2013) Post-ovulatory oocyte aging induces spontaneous occurrence of polyploids and mosaics in artificial fertilization of Japanese eel, Anguilla japonica. Aquaculture 404–405:15–21

    Article  Google Scholar 

  58. Dettlaff TA, Ginzburg AS, Schmalhausen OI (1993) Sturgeon fishes: developmental biology and aquaculture. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

The present study was financially supported in part by the Japan Society for the Promotion of Science [JSPS; KAKENHI grant nos. 21658067, 24248033 and 14F04751; the latter is a JSPS Postdoctoral Fellowship for Overseas Researchers through which Milos Havelka was supported]. The study was also financially supported in part by the Ministry of Education, Youth and Sports of the Czech Republic (Projects CENAKVA No. CZ.1.05/2.1.00/01.0024, and CENAKVA II No. LO1205, under the NPU I program), and the Czech Science Foundation (No. 14-28375P). The Lucidus Consultancy is gratefully acknowledged for the English corrections and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Havelka.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12562_2017_1083_MOESM1_ESM.xlsx

Supplementary material Table S1. Genotypes with private dam and sire alleles observed at all analysed loci for parent Acipenser mikadoi, spontaneous polyploids, and their full siblings with typical ploidy level of purebred A. mikadoi. (XLSX 37 kb)

12562_2017_1083_MOESM2_ESM.xlsx

Supplementary material Table S2. Genotypes with private dam and sire alleles observed at all analysed loci for parent A. mikadoi dam and Huso dauricus sire, spontaneous polyploids and their full siblings with typical ploidy level of hybrids A. mikadoi × H. dauricus. (XLSX 40 kb)

12562_2017_1083_MOESM3_ESM.pdf

Supplementary material Fig. S1. Scheme of investigation of the increase of private alleles in spontaneous polyploids. (PDF 2192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Havelka, M., Zhou, H., Hagihara, S. et al. Spontaneous polyploidization in critically endangered Acipenser mikadoi . Fish Sci 83, 587–595 (2017). https://doi.org/10.1007/s12562-017-1083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-017-1083-3

Keywords

Navigation