Skip to main content

Advertisement

Log in

Quantitative Real-Time PCR and Digital PCR to Evaluate Residual Quantity of HAV in Experimentally Depurated Mussels

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Kinetics of hepatitis A virus (HAV) accumulation and depuration from mussels (Mytilus galloprovincialis) was studied in an experimental depuration system. Different parameters likely to influence the rate of virus accumulation and elimination were evaluated. Analyses were carried out by both real-time RT-qPCR and digital PCR. Results demonstrated that the animals start to concentrate the virus already after one hour and reach the maximum level of contamination in 6 h of experiment. With respect to depuration, HAV showed a rapid reduction of the concentration (89%) during the first 24–48 h of experiment and a very slow virus decrement in the following days with a 1% residual RNA at the ninth day of depuration. When process parameters likely to increase the depuration rate (presence of ozone, microalgal feeding, presence of lactic bacteria, pre-treatment with digestive enzymes) were tested, no significant differences in the kinetics were observed. Only treatment with pancreatin seemed to positively affect depuration in the first two days of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al Kassaa, I., Hober, D., Hamze, M., Chihib, N. E., & Drider, D. (2014). Antiviral Potential of Lactic Acid Bacteria and Their Bacteriocins. Probiotics & Antimicro. Prot., 6, 177–185. https://doi.org/10.1007/s12602-014-9162-6

    Article  CAS  Google Scholar 

  • Amoroso, M. G., Langellotti, A. L., Russo, V., Martello, A., Monini, M., Di Bartolo, I., & Fusco, G. (2019). Accumulation and Depuration Kinetics of Rotavirus in Mussels Experimentally Contaminated. Food and Environmental Virology, 12(1), 48–57.

    Article  Google Scholar 

  • Amoroso, M. G., Salzano, C., Cioffi, B., Napoletano, M., Garofalo, F., Guarino, A., & Fusco, G. (2011). Validation of a Real-time PCR assay for fast and sensitive quantification of Brucella spp. in water buffalo milk. Food Control, 22(8), 1466–1470.

    Article  Google Scholar 

  • Araud, E., Di Caprio, E., Ma, Y., Lou, F., Gao, Y., Kingsley, D., & Li, J. (2016). Thermal inactivation of Enteric Viruses and Bioaccumulation of Enteric Foodborne Viruses in Live Oysters (Crassostrea virginica). Applied and Environmental Microbiology, 82(7), 2086–2099.

    Article  CAS  Google Scholar 

  • Butt, A. A., Aldridge, K. E., & Sanders, C. V. (2004). Infections related to the ingestion of seafood Part I: Viral and bacterial infections. The Lancet. Infectious Diseases, 4(4), 201–212.

    Article  Google Scholar 

  • Cella, E., Riva, E., Angeletti, S., Fogolari, M., Blasi, A., Scolamacchia, V., Spoto, S., Bazzardi, R., Lai, A., Sagnelli, C., Sagnelli, E., & Ciccozzi., M. . (2018). Genotype I hepatitis A virus introduction in Italy: Bayesian phylogenetic analysis to date different epidemics. Journal of medical virology, 90(9), 1493–1502.

    Article  Google Scholar 

  • Cioffi, B., Monini, M., Salamone, M., Pellicanò, R., Di Bartolo, I., Guida, M., La Rosa, G., & Fusco, G. (2020). Environmental surveillance of human enteric viruses in wastewaters, groundwater, surface water and sediments of Campania Region. Regional studies in marine science, 38, 101368.

    Article  Google Scholar 

  • Costafreda, M. I., Bosch, A., & Pinto, R. M. (2006). Development, evaluation, and standardization of a real-time TaqMan reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish samples. Applied and Environmental Microbiology, 72(6), 3846–3855. https://doi.org/10.1128/AEM.02660-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantino, A., Coppola, N., Spada, E., Bruni, R., Taffon, S., Equestre, M., & Ciccaglione, A. R. (2017). Hepatitis A virus strains circulating during 1997–2015 in Campania, a Southern Italy region with periodic outbreaks. Journal of Medical Virology, 89(11), 1931–1936. https://doi.org/10.1002/jmv.24880

    Article  PubMed  Google Scholar 

  • De Medici, D., Croci, L., Di Pasquale, S., Fiore, A., & Toti, L. (2001). Detecting the presence of infectious hepatitis A virus in molluscs positive to RT-nested-PCR. Letters in Applied Microbiology, 33(5), 362–366. https://doi.org/10.1046/j.1472-765X.2001.01018.x

    Article  PubMed  Google Scholar 

  • De Prisco, A., Maresca, D., Ongeng, D., & Mauriello, G. (2015). Microencapsulation by vibrating technology of the probiotic strain Lactobaciluus reuteri DSM 17938 to enhance its survival in foods and in gastrointestinal environment. LWT Food Science and Technology, 61, 452–462.

    Article  Google Scholar 

  • Fusco, G., Anastasio, A., Kingsley, D. H., Amoroso, M. G., Pepe, T., Fratamico, P. M., & Boccia, F. (2019). Detection of Hepatitis A Virus and Other Enteric Viruses in Shellfish Collected in the Gulf of Naples, Italy. International Journal of Environmental Research and Public Health, 16(14), 2588. https://doi.org/10.3390/ijerph16142588

    Article  CAS  PubMed Central  Google Scholar 

  • Fusco, G., Di Bartolo, I., Cioffi, B., Ianiro, G., Palermo, P., Monini, M., & Amoroso, M. G. (2017). Prevalence of Foodborne Viruses in Mussels in Southern Italy. Food and Environmental Virology, 9(2), 187–194. https://doi.org/10.1007/s12560-016-9277-x

    Article  PubMed  Google Scholar 

  • ISO/TS 15216–1:2017: Microbiology of food and animal feed - Horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR - Part 1: Method for quantification.

  • Kirk, M. D., Pires, S. M., Black, R. E., Caipo, M., Crump, J. A., Devleesschauwer, B., Döpfer, D., Fazil, A., Fischer-Walker, C. L., Hald, T., Hall, A. J., Keddy, K. H., Lake, R. J., Lanata, C. F., Torgerson, P. R., Havelaar, A. H., & Angulo, F. J. (2015). World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Medicine, 12(12), e1001921.

    Article  Google Scholar 

  • La Rosa, G., Mancini, P., Bonanno Ferraro, G., Iaconelli, M., Veneri, C., Paradiso, R., De Medici, D., Vicenza, T., Proroga, Y. T. R., Di Maro, O., Ciccaglione, A. R., Bruni, R., Equestre, M., Taffon, S., Costantino, A., Della Rotonda, M., & Suffredini, E. (2021). Hepatitis A Virus Strains Circulating in the Campania Region (2015–2018) Assessed through Bivalve Biomonitoring and Environmental Surveillance. Viruses, 13, 16.

    Article  Google Scholar 

  • Le Guyader, F. S., Bon, F., DeMedici, D., Parnaudeau, S., Bertone, A., Crudeli, S., & Ruggeri, F. M. (2006). Detection of multiple noroviruses associated with an international gastroenteritis outbreak linked to oyster consumption. Journal of Clinical Microbiology, 44(11), 3878–3882.

    Article  Google Scholar 

  • Love, D. C., Lovelace, G. L., & Sobsey, M. D. (2010). Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) by depuration. International Journal of Food Microbiology, 143(3), 211–217. https://doi.org/10.1016/j.ijfoodmicro.2010.08.028

    Article  CAS  PubMed  Google Scholar 

  • Lowther, J. A., Bosch, A., Butot, S., Ollivier, J., Mäde, D., Rutjes, S. A., & Leclercq, A. (2019). Validation of EN ISO method 15216 - Part 1 - Quantification of hepatitis A virus and norovirus in food matrices. International Journal of Food Microbiology, 288, 82–90.

    Article  CAS  Google Scholar 

  • Maalouf, H., Zakhour, M., Le Pendu, J., Le Saux, J. C., Atmar, R. L., & Le Guyader, F. S. (2010). Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters. Applied and Environmental Microbiology, 76(16), 5621–5630. https://doi.org/10.1128/AEM.00148-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLeod, C., Polo, D., Le Saux, J. C., & Le Guyader, F. S. (2017). Depuration and relaying: a review on potential removal of Norovirus from Oysters. Comprehensive Reviews in Food Science and Food Safety, 16, 692–706.

    Article  CAS  Google Scholar 

  • Polo, D., Alvarez, C., Longa, A., & Romalde, J. L. (2014). Effectiveness of depuration for hepatitis A virus removal from mussels (Mytilus galloprovincialis). International Journal of Food Microbiology, 180, 24–29. https://doi.org/10.1016/j.ijfoodmicro.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  • Polo, D., Avarez, C., Vilarino, M. L., Longa, A., & Romalde, J. L. (2014). Depuration kinetics of hepatitis A virus in clams. Food Microbiology, 39, 103–107. https://doi.org/10.1016/j.fm.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  • Polo, D., Feal, X., & Romalde, J. L. (2015). Mathematical model for viral depuration kinetics in shellfish: an useful tool to estimate the risk for the consumers. Food Microbiology, 49, 220–225. https://doi.org/10.1016/j.fm.2015.02.015

    Article  PubMed  Google Scholar 

  • Polo, D., Feal, X., Varela, M. F., Monteagudo, A., & Romalde, J. L. (2014). Depuration kinetics of murine norovirus in shellfish. Food Research International (Ottawa, Ont.), 64, 182–187.

    Article  CAS  Google Scholar 

  • Provost, K., Dancho, B. A., Ozbay, G., Anderson, R. S., Richards, G. P., & Kingsley, D. H. (2011). Hemocytes are sites of enteric virus persistence within oysters. Applied and Environmental Microbiology, 77(23), 8360–8369. https://doi.org/10.1128/AEM.06887-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegl, G., & Eggers, H. J. (1982). Failure of guanidine and 2-(alpha-hydroxybenzyl)benzimidazole to inhibit replication of hepatitis A virus in vitro. The Journal of General Virology, 61, 111–114. https://doi.org/10.1099/0022-1317-61-1-111

    Article  CAS  PubMed  Google Scholar 

  • Suffredini, E., Proroga, Y. T. R., Di Pasquale, S., Di Maro, O., Losardo, M., Cozzi, L., Capuano, F., & De Medici, D. (2017). Occurrence and Trend of Hepatitis A Virus in Bivalve Molluscs Production Areas Following a Contamination Event. Food and Environmental Virology, 9(4), 423–433.

    Article  Google Scholar 

  • Ueki, Y., Shoji, M., Suto, A., Tanabe, T., Okimura, Y., Kikuchi, Y., & Omura, T. (2007). Persistence of caliciviruses in artificially contaminated oysters during depuration. Applied and Environmental Microbiology, 73(17), 5698–5701.

    Article  CAS  Google Scholar 

  • Venuti, A., Di Russo, C., del Grosso, N., Patti, A. M., Ruggeri, F., De Stasio, P. R., & Midulla, M. (1985). Isolation and molecular cloning of a fast-growing strain of human hepatitis A virus from its double-stranded replicative form. Journal of Virology, 56(2), 579–588. https://doi.org/10.1128/JVI.56.2.579-588.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeargin, T., & Gibson, K. E. (2019). Key characteristics of foods with an elevated risk for viral enteropathogen contamination. Journal of Applied Microbiology, 126(4), 996–1010. https://doi.org/10.1111/jam.14113

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Grant RC015/IZSME from Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Grazia Amoroso or Antonio Luca Langellotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoroso, M.G., Di Concilio, D., Langellotti, A.L. et al. Quantitative Real-Time PCR and Digital PCR to Evaluate Residual Quantity of HAV in Experimentally Depurated Mussels. Food Environ Virol 13, 329–336 (2021). https://doi.org/10.1007/s12560-021-09470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-021-09470-4

Keywords

Navigation