Skip to main content
Log in

Evaluation of Virus Reduction by Ultrafiltration with Coagulation–Sedimentation in Water Reclamation

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

The evaluation of virus reduction in water reclamation processes is essential for proper assessment and management of the risk of infection by enteric viruses. Ultrafiltration (UF) with coagulation–sedimentation (CS) is potentially effective for efficient virus removal. However, its performance at removing indigenous viruses has not been evaluated. In this study, we evaluated the reduction of indigenous viruses by UF with and without CS in a pilot-scale water reclamation plant in Okinawa, Japan, by measuring the concentration of viruses using the real-time polymerase chain reaction (qPCR). Aichi virus (AiV) and pepper mild mottle virus (PMMoV) were targeted in addition to the main enteric viruses of concern for risk management, namely, norovirus (NoV) genogroups I and II (GI and GII) and rotavirus (RoV). PMMoV, which is a plant pathogenic virus and is present at high concentrations in water contaminated by human feces, has been suggested as a useful viral indicator. We also investigated the reduction of a spiked model virus (F-specific RNA bacteriophage MS2) to measure the effect of viral inactivation by both qPCR and plaque assay. Efficiencies of removal of NoV GI, NoV GII, RoV, and AiV by UF with and without CS were >0.5 to 3.7 log10, although concentrations were below the detection limit in permeate water. PMMoV was the most prevalent virus in both feed and permeate water following UF, but CS pretreatment could not significantly improve its removal efficiency (mean removal efficiency: UF, 3.1 log10; CS + UF, 3.4 log10; t test, P > 0.05). CS increased the mean removal efficiency of spiked MS2 by only 0.3 log10 by qPCR (t-test, P > 0.05), but by 2.8 log10 by plaque assay (t-test, P < 0.01). This difference indicates that the virus was inactivated during CS + UF. Our results suggest that PMMoV could be used as an indicator of removal efficiency in water reclamation processes, but cultural assay is essential to understanding viral fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albinana-Gimenez, N., Miagostovich, M. P., Calgua, B., Huguet, J. M., Matia, L., & Girones, R. (2009). Analysis of adenoviruses and polyomaviruses quantified by qPCR as indicators of water quality in source and drinking-water treatment plant. Water Research, 43, 2011–2019.

    Article  CAS  PubMed  Google Scholar 

  • Ambert-Balay, K., Lorrot, M., Bon, F., Giraudon, H., Kaplon, J., Wolfer, M., et al. (2008). Prevalence and genetic diversity of Aichi virus strains in stool samples from community and hospitalized patients. Journal of Clinical Microbiology, 46(1252–1258), 1.

    Google Scholar 

  • Asami, T., Katayama, H., Torrey, J. R., Visvanathan, C., & Furumai, H. (2016). Evaluation of virus removal efficiency of coagulation–sedimentation and rapid sand filtration processes in a drinking water treatment plant in Bangkok, Thailand. Water Research, 101, 84–94.

    Article  CAS  PubMed  Google Scholar 

  • Betancourt, W. Q., Kitajima, M., Wing, A. D., Regnery, J., Jörg, E., Pepper, I. L., et al. (2014). Assessment of virus removal by managed aquifer recharge at three full-scale operations. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 49(14), 37–41.

    Article  Google Scholar 

  • Boudaud, N., Machinal, C., David, F., Fréval-Le Bourdonnec, A. F., Jossent, J., Bakanga, F., et al. (2012). Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale. Water Research, 46, 2651–2664.

    Article  CAS  PubMed  Google Scholar 

  • Burutarán, L., Lizasoain, A., García, M., Tort, L. F. L., Colina, R., & Victoria, M. (2016). Detection and molecular characterization of Aichi Virus 1 in wastewater samples from Uruguay. Food and Environmental Virology, 8, 13–17.

    Article  PubMed  Google Scholar 

  • Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622.

    Article  CAS  PubMed  Google Scholar 

  • Ferrer, O., Casas, S., Galvaño, C., Lucena, F., Bosch, A., Galofré, B., et al. (2015). Direct ultrafiltration performance and membrane integrity monitoring by microbiological analysis. Water Research, 83, 121–131.

    Article  CAS  PubMed  Google Scholar 

  • Fiksdal, L., & Leiknes, T. (2006). The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water. Journal of Membrane Science, 279, 364–371.

    Article  CAS  Google Scholar 

  • Furiga, A., Pierre, G., Glories, M., Aimar, P., Roques, C., Causserand, C., et al. (2011). Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes. Applied and Environmental Microbiology, 77, 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Guo, H., & Hu, J. Y. (2011). Optimization study of a hybrid alum coagulation membrane filtration system for virus removal. Water Science and Technology, 64, 1843–1850.

    Article  CAS  PubMed  Google Scholar 

  • Hamza, I. A., Jurzik, L., Uberla, K., & Wilhelm, M. (2011). Evaluation of pepper mild mottle virus, human picobirnavirus and Torque teno virus as indicators of fecal contamination in river water. Water Research, 45(3), 1358–1368.

    Article  CAS  PubMed  Google Scholar 

  • Haramoto, E., Kitajima, M., Kishida, N., Konno, Y., Katayama, H., Asami, M., et al. (2013). Occurrence of pepper mild mottle virus in drinking water sources in Japan. Applied and Environmental Microbiology, 79(23), 7413–7418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hata, A., Kitajima, M., & Katayama, H. (2012). Occurrence and reduction of human viruses, F-specific RNA coliphage genogroups and microbial indicators at a full-scale wastewater treatment plant in Japan. Journal of Applied Microbiology, 114(2), 545–554.

    Article  PubMed  Google Scholar 

  • Hata, A., Matsumori, K., Kitajima, M., & Katayama, H. (2015). Concentration of enteric viruses in large volumes of water using a cartridge-type mixed cellulose ester membrane. Food and Environmental Virology, 7(1), 7–13.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., Young, T. A., Schwab, K. J., & Jacangelo, J. G. (2012). Mechanisms of virus removal from secondary wastewater effluent by low pressure membrane filtration. Journal of Membrane Science, 409–410, 1–8.

    Article  Google Scholar 

  • Jacangelo, J. G., Adham, S. S., & Laine, J. M. (1995). Mechanism of cryptosporidium, giardia, and MS2 virus removal by MF and UF. Journal-American Water Works Association, 87, 107–121.

    CAS  Google Scholar 

  • Jacangelo, J. G., Trussell, R. R., & Watson, M. (1997). Role of membrane technology in drinking water treatment in the United States. Desalination, 113, 119–127.

    Article  CAS  Google Scholar 

  • Joseph, G. J., Jean-Michel, L., Keith, E. C., Edward, W. C., & Joel, M. (1991). Low-pressure membrane filtration for removing Giardia and microbial indicators. Journal-American Water Works Association, 83, 97–106.

    Google Scholar 

  • Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., et al. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41(4), 1548–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama, H., Haramoto, E., Oguma, K., Yamashita, H., Tajima, A., Nakajima, H., et al. (2008). One-year monthly quantitative survey of noroviruses, enteroviruses, and adenoviruses in wastewater collected from six plants in Japan. Water Research, 42, 1441–1448.

    Article  CAS  PubMed  Google Scholar 

  • Katayama, H., Shimasaki, A., & Ohgaki, S. (2002). Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater. Applied and Environmental Microbiology, 68(3), 1033–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitajima, M., Hata, A., Yamashita, T., Haramoto, E., Minagawa, H., & Katayama, H. (2013). Development of a reverse transcription-quantitative PCR system for detection and genotyping of Aichi viruses in clinical and environmental samples. Applied and Environmental Microbiology, 79(13), 3952–3958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitajima, M., Iker, B. C., Pepper, I. L., & Gerba, C. P. (2014). Relative abundance and treatment reduction of viruses during wastewater treatment processes—Identification of potential viral indicators. Science of the Total Environment, 488–489, 290–296.

    Article  PubMed  Google Scholar 

  • Kitajima, M., Oka, T., Takagi, H., Tohya, Y., Katayama, H., Takeda, N., et al. (2010). Development and application of a broadly reactive real-time reverse transcription-PCR assay for detection of murine noroviruses. Journal of Virological Methods, 169, 269–273.

    Article  CAS  PubMed  Google Scholar 

  • Kreißel, K., Bösl, M., Hügler, M., Lipp, P., Franzreb, M., & Hambsch, B. (2014). Inactivation of F-specific bacteriophages during flocculation with polyaluminum chloride—A mechanistic study. Water Research, 51, 144–151.

    Article  PubMed  Google Scholar 

  • Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E., & Johnson, R. P. (2009). Enumeration of bacteriophages by double agar overlay plaque assay. Methods in Molecular Biology, 501, 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Kuroda, K., Nakada, N., Hanamoto, S., Inaba, M., Katayama, H., Thuan, A., et al. (2015). Pepper mild mottle virus as an indicator and a tracer of fecal pollution in water environments: Comparative evaluation with wastewater-tracer pharmaceuticals in Hanoi, Vietnam. Science of the Total Environment, 506–507(15), 287–298.

    Article  PubMed  Google Scholar 

  • Langlet, J., Ogorzaly, L., Schrotter, J. C., Machinal, C., Gaboriaud, F., Duval, J. F. L., et al. (2009). Efficiency of MS2 phage and Qβ phage removal by membrane filtration in water treatment: Applicability of real-time RT-PCR method. Journal of Membrane Science, 326, 111–116.

    Article  CAS  Google Scholar 

  • Li, D., Gu, A. Z., Zeng, S. Y., Yang, W., He, M., & Shi, H. C. (2011). Monitoring and evaluation of infectious rotaviruses in various wastewater effluents and receiving waters revealed correlation and seasonal pattern of occurrences. Journal of Applied Microbiology, 110(5), 1129–1137.

    Article  CAS  PubMed  Google Scholar 

  • Lodder, W. J., Rutjes, S. A., Takumi, K., & de Roda Husman, A. M. (2013). Aichi virus in sewage and surface water, the Netherlands. Emerging Infectious Disease Journal, 19, 1222–1230.

    Article  CAS  Google Scholar 

  • Lu, R., Mosiman, D., & Nguyen, T. H. (2013). Mechanisms of MS2 bacteriophage removal by fouled ultrafiltration membrane subjected to different cleaning methods. Environmental Science and Technology, 47, 13422–13429.

    Article  CAS  PubMed  Google Scholar 

  • Matsui, Y., Matsushita, T., Sakuma, S., Gojo, T., Mamiya, T., Suzuoki, H., et al. (2003). Virus inactivation in aluminum and polyaluminum coagulation. Environmental Science and Technology, 37, 5175–5180.

    Article  CAS  PubMed  Google Scholar 

  • Matsushita, T., Matsui, Y., Shirasaki, N., & Kato, Y. (2005). Effect of pore size, coagulation time, and coagulant dose on virus removal by a coagulation–ceramin microfiltration hybrid system. Desalination, 178, 21–26.

    Article  CAS  Google Scholar 

  • Matsushita, T., Shirasaki, N., Matsui, Y., & Ohno, K. (2011). Virus inactivation during coagulation with aluminum coagulants. Chemosphere, 85, 571–576.

    Article  CAS  PubMed  Google Scholar 

  • O’Connell, K. P., Bucher, J. R., Anderson, P. E., Cao, C. J., Khan, A. S., Gostomski, M. V., et al. (2006). Real time fluorogenic reverse transcription-PCR assays for detection of bacteriophage MS2. Applied and Environmental Microbiology, 72, 478–483.

    Article  PubMed  PubMed Central  Google Scholar 

  • Olivieri, A. W., Seto, E., Cooper, R. C., Cahn, M. D., Colford, J.-F., Crook, J., et al. (2014). Risk-based review of California’s water-recycling criteria for agricultural irrigation. Journal of Environmental Engineering, 140, 04014015-1–04014015-10.

    Article  Google Scholar 

  • Pang, X. L., Lee, B., Boroumand, N., Leblanc, B., Preiksaitis, J. K., & Yu, C. C. (2004). Increased detection of rotavirus using a real time reverse transcription-polymerase chain reaction (RT-PCR) Assay in stool specimens from children with diarrhea. Journal of Medical Virology, 72, 496–501.

    Article  CAS  PubMed  Google Scholar 

  • Pedrero, F., Kalavrouziotis, I., Alarcon, J. J., Koukoulakis, P., & Asano, T. (2010). Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agricultural Water Management, 97, 1233–1241.

    Article  Google Scholar 

  • Pérez-Sautu, U., Sano, D., Guix, S., Kasimir, G., Pintó, R. M., & Bosch, A. (2012). Human norovirus occurrence and diversity in the Llobregat river catchment, Spain. Environmental Microbiology, 14, 494–502.

    Article  PubMed  Google Scholar 

  • Prevost, B., Lucas, F. S., Goncalves, A., Richard, F., Moulin, L., & Wurtzer, S. (2015). Large scale survey of enteric viruses in river and waste water underlines the health status of the local population. Environment International, 79, 42–50.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, Y., Lee, B. E., Neumann, N., Ashbolt, N., Craik, S., Maal-Bared, R., et al. (2015). Assessment of human virus removal during municipal wastewater treatment in Edmonton, Canada. Journal of Applied Microbiology, 119, 1729–1739.

    Article  CAS  PubMed  Google Scholar 

  • Rosario, K., Symonds, E. M., Sinigalliano, C., Stewart, J., & Breitbart, M. (2009). Pepper mild mottle virus as an indicator of fecal pollution. Applied and Environmental Microbiology, 75(22), 7261–7267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano, D., Amarasiri, M., Hata, A., Watanabe, T., & Katayama, H. (2016). Risk management of viral infectious diseases in wastewater reclamation and reuse: Review. Environment International, 91, 220–229.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz, B. W., Kitajima, M., Campillo, M. E., Gerba, C. P., & Pepper, I. L. (2016). Virus reduction during advanced Bardenpho and conventional wastewater treatment processes. Environmental Science and Technology, 50, 9524–9532.

    Article  CAS  PubMed  Google Scholar 

  • Sdiri-Loulizi, K., Hassine, M., Aouni, Z., Gharbi-Khelifi, H., Sakly, N., Chouchane, S., et al. (2010). First molecular detection of Aichi virus in sewage and shellfish samples in the Monastir region of Tunisia. Archives of Virology, 155, 1509–1513.

    Article  CAS  PubMed  Google Scholar 

  • Shirasaki, N., Matsushita, T., Matsui, Y., Kobuke, M., & Ohno, K. (2009). Comparison of removal performance of two surrogate for pathogenic waterborne viruses, bacteriophage Qβ and MS2, in a coagulation–ceramic microfiltration system. Journal of Membrane Science, 326, 564–571.

    Article  CAS  Google Scholar 

  • SWRCB. (2015). State Water Resources Control Board, Regulations Related to Recycled Water. Retrieved January 10, 2017, from http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/lawbook/RWregulations_20150716.pdf.

  • van Voorthuizen, E. M., Ashbolt, N. J., & Schäfer, A. I. (2001). Role of hydrophobic and electrostatic interactions for initial enteric virus retention by MF membranes. Journal of Membrane Science, 194, 69–79.

    Article  Google Scholar 

  • WHO. (2011). Guidelines for drinking-water quality. Retrieved January 12, 2017, from http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf.

  • Yamashita, T., & Sakae, K. (2003). Molecular biology and epidemiology of Aichi virus and other diarrhoeogenic enteroviruses. Perspectives in Medical Virology, 9, 645–657.

    Article  CAS  Google Scholar 

  • Yamashita, T., Sakae, K., Ishihara, Y., Isomura, S., & Utagawa, E. (1993). Prevalence of newly isolated, cytopathic small round virus (Aichi strain) in Japan. Journal of Clinical Microbiology, 31, 2938–2943.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita, T., Suguyama, M., Tsuzuki, H., Sakae, K., Suzuki, Y., & Miyazaki, Y. (2000). Application of a reverse transcription-PCR for identification and differentiation of Aichi virus, a new member of the Picornavirus family associated with gastroenteritis in humans. Journal of Clinical Microbiology, 8, 2855–2961.

    Google Scholar 

  • Yasui, N., Suwa, M., Sakurai, K., Suzuki, Y., Tsumori, J., Kobayashi, K., et al. (2016). Removal characteristics and fluctuation of norovirus in a pilot-plant by an ultrafiltration membrane for the reclamation of treated sewage. Environmental Technology, 37, 2793–2801.

    Article  CAS  PubMed  Google Scholar 

  • Yin, Z., Tarabara, V. V., & Xagoraraki, I. (2015). Human adenovirus removal by hollow fiber membranes: Effect of membrane fouling by suspended and dissolved matter. Journal of Membrane Science, 482, 120–127.

    Article  CAS  Google Scholar 

  • Zhang, T., Breitbart, M., Lee, W. H., Run, J.-Q., Wei, C. L., Soh, S. W. L., et al. (2006). RNA viral community in human feces: Prevalence of plant pathogenic viruses. PLoS Biology, 4(1), e3.

    Article  PubMed  Google Scholar 

  • Zhu, B., Dennis, A. C., & Chellam, S. (2005a). Comparison of electrocoagulation and chemical coagulation pretreatment for enhanced virus removal using microfiltration membranes. Water Research, 39, 3098–3108.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B., Dennis, A. C., & Chellam, S. (2005b). Virus removal by iron coagulation–microfiltration. Water Research, 39, 5153–5161.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a JSPS KAKENHI Grant (15H02273) and the Core Research for Evolutional Science and Technology (CREST) Grant for ‘Innovative Technologies and Systems for Research on Sustainable Water Use’ by the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suntae Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Hata, A., Yamashita, N. et al. Evaluation of Virus Reduction by Ultrafiltration with Coagulation–Sedimentation in Water Reclamation. Food Environ Virol 9, 453–463 (2017). https://doi.org/10.1007/s12560-017-9301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-017-9301-9

Keywords

Navigation