Skip to main content
Log in

Evaluating Efficacy of Field-Generated Electrochemical Oxidants on Disinfection of Fomites Using Bacteriophage MS2 and Mouse Norovirus MNV-1 as Pathogenic Virus Surrogates

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Surface disinfection, as part of environmental hygiene practices, is an efficient barrier to gastroenteritis transmission. However, surface disinfectants may be difficult to obtain in remote, resource-limited, or disaster relief settings. Electrochemical oxidants (ECO) are chlorine-based disinfectants that can be generated using battery power to electrolyze brine (NaCl) solutions. Electrolysis generates a mixed-oxidant solution that contains both chlorine (HOCl, OCl) and reactive oxygen species (e.g., ·OH, O3, H2O2, and ·O2−) capable of inactivating pathogens. One onsite generator of ECO is the Smart Electrochlorinator 200 (SE-200, Cascade Designs, Inc.). In a laboratory study, we assessed ECO surface disinfection efficacy for two gastrointestinal virus surrogates: bacteriophage MS2 and murine norovirus MNV-1. We quantified both infectivity and nucleic acid inactivation using culture-dependent and independent assays. At free available chlorine concentrations of 2,500 ppm and a contact time of 30 s, ECO inactivation of infective MS2 bacteriophage exceeded 7 log10 compared to MNV-1 disinfection of approximately 2 log10. Genomic RNA inactivation was less than infective virus inactivation: MS2 RNA inactivation was approximately 5 log10 compared to MNV-1 RNA inactivation of approximately 1.5 log10. The results are similar to inactivation efficacy of household bleach when used at similar free available chlorine concentrations. Our work demonstrates the potential of ECO solutions, generated onsite, to be used for surface disinfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abad, F. X., Pinto, R. M., & Bosch, A. (1994). Survival of enteric viruses on environmental fomites. Applied and Environmental Microbiology, 60(10), 3704–3710.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abad, F. X., Pintó, R. M., & Bosch, A. (1997). Disinfection of human enteric viruses on fomites. FEMS Microbiology Letters, 156(1), 107–111.

    Article  CAS  PubMed  Google Scholar 

  • Abbaszadegan, M., Mayer, B. K., Ryu, H., & Nwachuku, N. (2007). Efficacy of removal of CCL viruses under enhanced coagulation conditions. Environmental Science and Technology, 41(3), 971–977.

    Article  CAS  PubMed  Google Scholar 

  • Aghababian, R. V., & Teuscher, J. (1992). Infectious diseases following major disasters. Annals of Emergency Medicine, 21(4), 362–367.

    Article  CAS  PubMed  Google Scholar 

  • Bae, J., & Schwab, K. J. (2008). Evaluation of murine Norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human Norovirus in a model of viral persistence in surface water and groundwater. Applied and Environmental Microbiology, 74(2), 477–484.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barker, J., Vipond, I., & Bloomfield, S. (2004). Effects of cleaning and disinfection in reducing the spread of norovirus contamination via environmental surfaces. Journal of Hospital Infection, 58(1), 42–49.

    Article  CAS  PubMed  Google Scholar 

  • Block, S. S. (2001). Disinfection, sterilization and preservation. Lawrence: Wolters Kluwer Health.

    Google Scholar 

  • Bright, K. R., Boone, S. A., & Gerba, C. P. (2009). Occurrence of bacteria and viruses on elementary classroom surfaces and the potential role of classroom hygiene in the spread of infectious diseases. Journal of School Nursing, 26(1), 33–41.

    Article  PubMed  Google Scholar 

  • Cromeans, T. L., Kahler, A. M., & Hill, V. R. (2010). Inactivation of adenoviruses, enteroviruses, and murine norovirus in water by free chlorine and monochloramine. Applied and Environmental Microbiology, 76(4), 1028–1033.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dalling, J. (2004). A review of environmental contamination during outbreaks of Norwalk-like virus. British Journal of Infection Control, 5(2), 9–13.

    Article  Google Scholar 

  • Dietrich, J. P., Başağaoğlu, H., Loge, F. J., & Ginn, T. R. (2003). Preliminary assessment of transport processes influencing the penetration of chlorine into wastewater particles and the subsequent inactivation of particle-associated organisms. Water Research, 37(1), 139–149.

    Article  CAS  PubMed  Google Scholar 

  • D’Souza, D. H., & Su, X. (2010). Efficacy of chemical treatments against murine norovirus, feline calicivirus, and MS2 bacteriophage. Foodborne Pathogens and Disease, 7(3), 319–326.

    Article  PubMed  Google Scholar 

  • Duizer, E., Schwab, K. J., Neill, F. H., Atmar, R. L., Koopmans, M. P., & Estes, M. K. (2004). Laboratory efforts to cultivate noroviruses. Journal of General Virology, 85(1), 79–87.

    Article  CAS  PubMed  Google Scholar 

  • Gelinas, P., & Goulet, J. (1983). Neutralization of the activity of eight disinfectants by organic matter. Journal of Applied Microbiology, 54(2), 243–247.

    CAS  Google Scholar 

  • Ghebremichael, K., Muchelemba, E., Petrusevski, B., & Amy, G. (2011). Electrochemically activated water as an alternative to chlorine for decentralized disinfection. Journal of Water Supply: Research and Technology—Aqua, 60(4), 210–218.

    Article  CAS  Google Scholar 

  • Gordon, G., Bolden, R., & Emmert, G. (2002). Measuring oxidant species in electrolyzed salt brine solutions. Journal American Water Works Association, 94(10), 111–120.

    CAS  Google Scholar 

  • Jeong, J., Kim, J. Y., & Yoon, J. (2006). The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environmental Science and Technology, 40(19), 6117–6122.

    Article  CAS  PubMed  Google Scholar 

  • Krilov, L. R., Barone, S. R., Mandel, F. S., Cusack, T. M., Gaber, D. J., & Rubino, J. R. (1996). Impact of an infection control program in a specialized preschool. American Journal of Infection Control, 24(3), 167–173.

    Article  CAS  PubMed  Google Scholar 

  • LeChevallier, M. W., Hassenauer, T. S., Camper, A. K., & McFeters, G. A. (1984). Disinfection of bacteria attached to granular activated carbon. Applied and Environmental Microbiology, 48(5), 918–923.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Len, S.-V., Hung, Y.-C., Chung, D., Anderson, J. L., Erickson, M. C., & Morita, K. (2002). Effects of storage conditions and pH on chlorine loss in electrolyzed oxidizing (EO) water. Journal of Agricultural and Food Chemistry, 50(1), 209–212.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. W., Xin, Z. T., Wang, X. W., Zheng, J. L., & Chao, F. H. (2004). Mechanisms of inactivation of hepatitis A virus in water by chlorine dioxide. Water Research, 38(6), 1514–1519.

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Huitle, C. A., & Brillas, E. (2008). Electrochemical alternatives for drinking water disinfection. Angewandte Chemie International Edition, 47(11), 1998–2005.

    Article  Google Scholar 

  • Mattle, M. J., Crouzy, B., Brennecke, M. R., Wigginton, K., Perona, P., & Kohn, T. (2011). Impact of virus aggregation on inactivation by peracetic acid and implications for other disinfectants. Environmental Science and Technology, 45(18), 7710–7717.

    Article  CAS  PubMed  Google Scholar 

  • Nuanualsuwan, S., & Cliver, D. O. (2003). Capsid functions of inactivated human picornaviruses and feline calicivirus. Applied and Environmental Microbiology, 69(1), 350–357.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Connell, K. P., Bucher, J. R., Anderson, P. E., Cao, C. J., Khan, A. S., Gostomski, M. V., et al. (2006). Real-time fluorogenic reverse transcription-PCR assays for detection of bacteriophage MS2. Applied and Environmental Microbiology, 72(1), 478.

    Article  PubMed Central  PubMed  Google Scholar 

  • Patel, M. M., Hall, A. J., Vinjé, J., & Parashar, U. D. (2009). Noroviruses: a comprehensive review. Journal of clinical virology: The official publication of the Pan American Society for Clinical Virology, 44(1), 1.

    Article  CAS  Google Scholar 

  • Pecson, B. M., Martin, L. V., & Kohn, T. (2009). Quantitative PCR for determining the infectivity of bacteriophage MS2 upon inactivation by heat, UVB and singlet oxygen: advantages and limitations of an enzymatic treatment to reduce false-positive results. Applied and Environmental Microbiology, 75(17), 5544–5554.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pickering, A. J., Julian, T. R., Marks, S. J., Mattioli, M. C., Boehm, A. B., Schwab, K. J., et al. (2012). Fecal contamination and diarrheal pathogens on surfaces and soil show spatial heterogeneity within Tanzanian households and no association with improved sanitation. Environmental Science and Technology, 46(11), 5736.

    Article  CAS  PubMed  Google Scholar 

  • Reckhow, D. A., Singer, P. C., & Malcolm, R. L. (1990). Chlorination of humic materials: Byproduct formation and chemical interpretations. Environmental Science and Technology, 24(11), 1655–1664.

    Article  CAS  Google Scholar 

  • Rivera, S. B., Zuback, R., & Goodwin, W. P. (2009). Improving access to safe water through technology and informed design. Proceedings of the Water Environment Federation, 2009(1), 565–574.

    Article  Google Scholar 

  • Sanglay, G.C. (2012). Inactivation and mechanism of electron beam irradiation and sodium hypochlorite sanitizers against a human norovirus surrogate (PhD thesis). Ohio State University, Columbus, OH.

  • Sinclair, R. G., & Gerba, C. P. (2011). Microbial contamination in kitchens and bathrooms of rural Cambodian village households. Letters in Applied Microbiology, 52(2), 144–149.

    Article  CAS  PubMed  Google Scholar 

  • Son, H., Cho, M., Kim, J., Oh, B., Chung, H., & Yoon, J. (2005). Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine. Water Research, 39(4), 721–727.

    Article  CAS  PubMed  Google Scholar 

  • Teunis, P. F. M., Moe, C. L., & Liu, P. (2008). Norwalk virus: How infectious is it? Journal of Medical Virology, 80(8), 1468–1476.

    Article  PubMed  Google Scholar 

  • Tung, G., Macinga, D., Arbogast, J., & Jaykus, L.-A. (2013a). Efficacy of commonly used disinfectants for inactivation of human noroviruses and their surrogates. Journal of Food Protection, 76(7), 1210–1217.

    Article  CAS  PubMed  Google Scholar 

  • Tung, G., Macinga, D., Arbogast, J., & Jaykus, L.-A. (2013b). Efficacy of commonly used disinfectants for inactivation of human noroviruses and their surrogates. Journal of Food Protection®, 76(7), 1210–1217.

    Article  CAS  Google Scholar 

  • Urakami, H., Ikarashi, K., Okamoto, K., Abe, Y., Ikarashi, T., Kono, T., et al. (2007). Chlorine sensitivity of feline calicivirus, a norovirus surrogate. Applied and Environmental Microbiology, 73(17), 5679–5682.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • USEPA. (2001). EPA method 1602: Male-specific (F+) and somatic coliphage in water by single agar layer (SAL) procedure. Washington, DC: Environmental Protection Agency.

    Google Scholar 

  • Venczel, L. V., Arrowood, M., Hurd, M., & Sobsey, M. D. (1997). Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine. Applied and Environmental Microbiology, 63(4), 1598–1601.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Venczel, L., Likirdopulos, C., Robinson, C., & Sobsey, M. (2004). Inactivation of enteric microbes in water by electro-chemical oxidant from brine (NaCl) and free chlorine. Water Science and Technology, 50(1), 141–146.

    CAS  PubMed  Google Scholar 

  • Ward, R., Bernstein, D., Knowlton, D., Sherwood, J., Young, E., Cusack, T., et al. (1991). Prevention of surface-to-human transmission of rotaviruses by treatment with disinfectant spray. Journal of Clinical Microbiology, 29(9), 1991–1996.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wick, H., & Charles, P. E. M. (1999). Characterization of purified MS2 bacteriophage by the physical counting methodology used in the integrated virus detection system (IVDS). Toxicology Mechanisms and Methods, 9(4), 245–252.

    Article  CAS  Google Scholar 

  • Wigginton, K. R., Pecson, B. M., Sigstam, Tr, Bosshard, F., & Kohn, T. (2012). Virus inactivation mechanisms: Impact of disinfectants on virus function and structural integrity. Environmental Science and Technology, 46(21), 12069–12078.

    Article  CAS  PubMed  Google Scholar 

  • Wilmouth, R., Forsyth, J., & Meschke, J. S. (2011). Evaluation of the implementation (Pilot) of a small community electrochlorination device-smart electrochlorinator (SE200)-at a field site in a peri-urban community (Kisumu, Kenya). Proceedings of the Water Environment Federation, 2011(3), 253–273.

    Article  Google Scholar 

  • Winward, G. P., Avery, L. M., Stephenson, T., & Jefferson, B. (2008). Chlorine disinfection of grey water for reuse: Effect of organics and particles. Water Research, 42(1–2), 483–491.

    Article  CAS  PubMed  Google Scholar 

  • Wobus, C. E., Karst, S. M., Thackray, L. B., Chang, K.-O., Sosnovtsev, S. V., Belliot, G., et al. (2004). Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biology, 2(12), e432.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wobus, C. E., Thackray, L. B., & Virgin, H. W. (2006). Murine norovirus: A model system to study norovirus biology and pathogenesis. Journal of Virology, 80(11), 5104–5112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young, D. C., & Sharp, D. G. (1985). Virion conformational forms and the complex inactivation kinetics of echovirus by chlorine in water. Applied and Environmental Microbiology, 49(2), 359–364.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Cascade Designs, Inc., the Osprey Foundation of Maryland, Inc., and the Johns Hopkins University Global Water Program. Cascade Designs, Inc. provided financial resources and input into the experimental design but was not otherwise involved in the study. We would like to thank Rebecca Pinekenstein for laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kellogg J. Schwab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julian, T.R., Trumble, J.M. & Schwab, K.J. Evaluating Efficacy of Field-Generated Electrochemical Oxidants on Disinfection of Fomites Using Bacteriophage MS2 and Mouse Norovirus MNV-1 as Pathogenic Virus Surrogates. Food Environ Virol 6, 145–155 (2014). https://doi.org/10.1007/s12560-014-9136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-014-9136-6

Keywords

Navigation