Skip to main content
Log in

Evaluation of Two Primer Sets Using Newly Developed Internal Amplification Controls for Rapid Human Norovirus Detection by SYBR Green I Based Real-Time RT-PCR

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Rapid detection of emerging virulent human noroviruses (Genogroups I and II) from clinical and food samples remains an on-going challenge. Development of internal amplification controls (IACs) in real-time RT-PCR assays to eliminate false negatives due to sample inhibition or reaction failure is critical. RNA IACs were constructed for application with two sets of previously described highly reactive degenerate primers (MON and COG) for the detection of human noroviruses (HNoVs) GI and GII. These primer sets were compared for detection sensitivity of HNoVs from outbreak stool samples (6 GI and 9 GII) by SYBR Green I based real-time reverse-transcriptase (RT)-PCR. In order to detect viruses directly from stool samples, heat release was used to expose the viral RNA (95°C, 10 min). PCR conditions were optimized for each primer set before and also after IAC addition to obtain similar detection limits. Both primer sets showed equal detection limits for GII strains (4 log RT-PCR U/sample) and with one-log higher detection for GI strains (10−5 end-point dilution; 5 log RT-PCR U/sample). The melt temperature (T m) of the COG and MON IAC were 83°C (155 bp) and 83.5°C (150 bp), respectively. Product T m were 84°C (using MON primers for both genogroups) and 81.5°C (COG for GI) and 84°C (COG for GII). Agarose gel electrophoresis determined product sizes as 85 and 98 bp for GI and GII with COG, respectively, and 213 bp with MON for both genogroups. From our study, COG primers appear to have a broader detection range than the MON primers, using the 15 tested stool samples. This assay can potentially be implemented for routine HNoV detection from clinical and food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulmawjood, A., Roth, S., & Bulte, M. (2002). Two methods for construction of internal amplification controls for the detection of Escherichia coli O157 by polymerase chain reaction. Molecular and Cellular Probes, 16, 335–339.

    Article  PubMed  CAS  Google Scholar 

  • Ando, T., Monroe, S. S., Gentsch, J. R., et al. (1995). Detection and differentiation of antigenically distinct small round-structured viruses (Norwalk-like viruses) by reverse transcription-PCR and southern hybridization. Journal of Clinical Microbiology, 33, 64–71.

    PubMed  CAS  Google Scholar 

  • Atmar, R. L., Neill, F. H., & Le Guyader, F. S. (2008) Detection of human caliciviruses in fecal samples by RT-PCR. Diagnostic Virology Protocols, Methods in Molecular Biology, 665. doi: 10.1007/978-1-60761-817-1_3.

  • Brightwell, G., Pearce, M., & Leslie, D. (1998). Development of internal controls for PCR detection of Bacillus anthracis. Molecular and Cellular Probes, 12, 367–377.

    Article  PubMed  CAS  Google Scholar 

  • Bustin, S. A., Benes, V., Nolan, T., & Pfaffl, M. W. (2005). Quantitative real-time RT-PCR—a perspective. Journal of Molecular Endocrinology, 34, 597–601.

    Article  PubMed  CAS  Google Scholar 

  • D’Souza, H. D., Critzer, F. J., & Golden, D. A. (2009). Real-time reverse-transcriptase polymerase chain reaction for the rapid detection of Salmonella using invA primers. Foodborne Pathogens and Disease, 6, 1097–1106.

    Article  PubMed  Google Scholar 

  • Escobar-Herrera, J., Cancio, C., Guzman, G. I., et al. (2006). Construction of an internal RT-PCR standard control for the detection of human caliciviruses in stool. Journal of Virological Methods, 137, 334–338.

    Article  PubMed  CAS  Google Scholar 

  • Hoorfar, J., Malorny, B., Abdulmawjood, A., et al. (2004). Practical considerations in design of internal amplification controls for diagnostic PCR assays. Journal of Clinical Microbiology, 42, 1863–1868.

    Article  PubMed  CAS  Google Scholar 

  • Kageyama, T., Kojima, S., Shinohara, M., et al. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41, 1548–1557.

    Article  PubMed  CAS  Google Scholar 

  • Koopmans, M., & Duizer, E. (2004). Foodborne viruses: an emerging problem. International Journal of Food Microbiology, 90, 23–41.

    Article  PubMed  Google Scholar 

  • Koopmans, M., Vennema, H., Heersma, H., et al. (2003). Early identification of common-source foodborne virus outbreaks in Europe. Emerging Infectious Diseases, 9, 1136–1142.

    PubMed  Google Scholar 

  • Kricka, L. J. (2002). Stains, labels and detection strategies for nucleic acid assays. Annals of Clinical Biochemistry, 39, 114–129.

    Article  PubMed  CAS  Google Scholar 

  • Kroneman, A., Harris, J., Vennema, H., et al. (2008). Data quality of 5 years of central norovirus outbreak reporting in the European Network for food-borne viruses. Journal of Public Health, 30(1), 82–90.

    Article  PubMed  CAS  Google Scholar 

  • Lantz, P. G., Matsson, M., Wadstrom, T., & Radstrom, P. (1997). Removal of PCR inhibitors from human fecal samples through the use of an aqueous two-phase system for sample preparation prior to PCR. Journal of Microbiological Methods, 28, 159–167.

    Article  CAS  Google Scholar 

  • Mattison, K., & Bidawid, S. (2009). Analytical methods for food and environmental viruses. Food and Environmental Virology, 1, 107–122.

    Article  Google Scholar 

  • Mead, P. S., Slutsker, L., Dietz, V., et al. (1999). Food-related illness and death in the United States. Emerging Infectious Diseases, 5, 607–625.

    Article  PubMed  CAS  Google Scholar 

  • Richards, G. P., Watson, M. A., Fankhauser, R. L., & Monroe, S. S. (2004a). Genogroup I and II noroviruses detected in stool samples by real-time reverse transcription-PCR using highly degenerate universal primers. Applied and Environmental Microbiology, 70, 7179–7184.

    Article  PubMed  CAS  Google Scholar 

  • Richards, G. P., Watson, M. A., & Kingsley, D. H. (2004b). A SYBR green, real-time RT-PCR method to detect and quantitate Norwalk virus in stools. Journal of Virological Methods, 116, 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Ririe, K. M., Rasmussen, R. P., & Wittwer, C. T. (1997). Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical Biochemistry, 245, 154–160.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Lazaro, D., D’Agostino, M., Pla, M., & Cook, N. (2004). Construction strategy for an internal amplification control for real-time diagnostic assays using nucleic acid sequence-based amplification: development and clinical application. Journal of Clinical Microbiology, 42, 5832–5836.

    Article  PubMed  CAS  Google Scholar 

  • Sachadyn, P., & Kur, J. (1998). The construction and use of a PCR internal control. Molecular and Cellular Probes, 12, 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, K. J., Estes, M. K., Neill, F. H., & Atmar, R. T. (1997). Use of heat release and an internal RNA standard control in reverse transcription-PCR detection of Norwalk virus from stool samples. Journal of Clinical Microbiology, 35, 511–514.

    PubMed  CAS  Google Scholar 

  • Trujillo, A. A., McCaustland, K. A., Zheng, D. P., et al. (2006). Use of TaqMan real-time reverse transcription-PCR for rapid detection, quantification, and typing of noroviruses. Journal of Clinical Microbiology, 44, 1405–1412.

    Article  PubMed  CAS  Google Scholar 

  • Vinje, J., Vennema, H., Maunula, L., et al. (2003). International collaborative study to compare reverse transcriptase PCR assays for detection and genotyping of noroviruses. Journal of Clinical Microbiology, 41, 1423–1433.

    Article  PubMed  CAS  Google Scholar 

  • Widdowson, M. A., & Vinje, J. (2008). Food-borne viruses—state of art. In M. P. G. Koopmans, D. O. Cliver, & A. Bosch (Eds.), Food-borne viruses progress and challenges (pp. 29–64). Washington, DC: ASM Press.

    Google Scholar 

  • Zheng, D., Ando, T., Fankhauser, R. L., et al. (2006). Norovirus classification and proposed strain nomenclature. Virology, 346, 312–323.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for the research that was provided by the TN Agricultural Experiment Station (UT-TEN-HATCH #00391) and the FULBRIGHT PROGRAM (Grant #68432926) are gratefully acknowledged. Dr. Dragoslava Radin was a Fulbright Scholar under the mentorship of Dr. Doris H. D’Souza at FST, UT-Knoxville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris H. D’Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radin, D., D’Souza, D.H. Evaluation of Two Primer Sets Using Newly Developed Internal Amplification Controls for Rapid Human Norovirus Detection by SYBR Green I Based Real-Time RT-PCR. Food Environ Virol 3, 61–69 (2011). https://doi.org/10.1007/s12560-011-9057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-011-9057-6

Keywords

Navigation