Skip to main content
Log in

Fast Face Recognition Via Sparse Coding and Extreme Learning Machine

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Most face recognition approaches developed so far regard the sparse coding as one of the essential means, while the sparse coding models have been hampered by the extremely expensive computational cost in the implementation. In this paper, a novel scheme for the fast face recognition is presented via extreme learning machine (ELM) and sparse coding. The common feature hypothesis is first introduced to extract the basis function from the local universal images, and then the single hidden layer feedforward network (SLFN) is established to simulate the sparse coding process for the face images by ELM algorithm. Some developments have been done to maintain the efficient inherent information embedding in the ELM learning. The resulting local sparse coding coefficient will then be grouped into the global representation and further fed into the ELM ensemble which is composed of a number of SLFNs for face recognition. The simulation results have shown the good performance in the proposed approach that could be comparable to the state-of-the-art techniques at a much higher speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Clark A. Mindware: an introduction to the philosophy of cognitive science. New York: Oxford University Press; 2001.

    Google Scholar 

  2. Underwood G. Cognitive processes in eye guidance: algorithms for attention in image processing. Cogn Comput. 2009;1(1):64–76.

    Article  Google Scholar 

  3. Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cogn Comput. 2012;4(4):477–96.

    Article  Google Scholar 

  4. Nian R, Ji GR, Zhao WC, Feng C. Probabilistic 3D object recognition from 2D invariant view sequence based on similarity. Neurocomputing. 2007;70(4–6):785–93.

    Article  Google Scholar 

  5. Zhao W, Chellappa R, Phillips P, Rosenfeld A. Face recognition: a literature survey. ACM Comput Surv. 2003;35(4):399–458.

    Article  Google Scholar 

  6. Turk M, Pentland A. Eigenfaces for recognition. J Cogn Neurosci. 1991;3:71–86.

    Article  CAS  PubMed  Google Scholar 

  7. Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):711–20.

    Article  Google Scholar 

  8. Cootes TF, Edwards GJ, Taylor CJ. Active appearance models. IEEE Trans Pattern Anal Mach Intell. 1998;23(6):681–5.

    Article  Google Scholar 

  9. Brunelli R, Poggio T. Face recognition: features versus templates. IEEE Trans Pattern Anal Mach Intell. 1993;15(10):1042–52.

    Article  Google Scholar 

  10. Heisele B, Serre T, Poggio T. A component-based framework for face detection and identification. Int J Comput Vision. 2007;74(2):167–81.

    Article  Google Scholar 

  11. Zou J, Ji Q, Nagy G. A comparative study of local matching approach for face recognition. IEEE Trans Image Process. 2007;16(10):2617–28.

    Article  PubMed  Google Scholar 

  12. Wiskott L, Fellous JM, Kuiger N, von der Malsburg C. Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):775–9.

    Article  Google Scholar 

  13. Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195(3):215–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996;381(13):607–9.

    Article  CAS  PubMed  Google Scholar 

  15. Olshausen BA, Field DJ. Sparse coding with an over-complete basis set: a strategy employed by v1? Vis Res. 1997;37(23):3311–25.

    Article  CAS  PubMed  Google Scholar 

  16. Lee H, Battle A, Raina R, Ng AY. Efficient sparse coding algorithms. Adv Neural Inf Process Syst. 2006;801–8.

  17. Lewicki MS, Sejnowski TJ. Learning overcomplete representations. Neural Comput. 2000;12(2):337–65.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson JS, Olshausen BA. Timecourse of neural signatures of object recognition. J Vis. 2003;3(7):499–512.

    Article  PubMed  Google Scholar 

  19. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell. 2009;31(2):210–27.

    Article  PubMed  Google Scholar 

  20. Huang JZ, Huang XL, Metaxas D. Simultaneous image transformation and sparse representation recovery. CVPR. 2008;1–8.

  21. Wagner A, Wright J, Ganesh A, Zhou ZH, Ma Y. Towards a practical face recognition system: robust registration and illumination by sparse representation. CVPR. 2009;597–604.

  22. Yang M, Zhang L. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. ECCV. 2010;448–61.

  23. Shan HH, Zhang LY, Cottrell GW. Recursive ICA. Adv Neural Inf Process Syst. 2006;1273–80.

  24. Shan HH, Cottrell GW. Looking around the backyard helps to recognize faces and digits. CVPR. 2008;1–8.

  25. Huang GB, Zhu Q, Siew CK. Extreme learning machine: theory and applications. Neurocomputing. 2006;70:489–501.

    Article  Google Scholar 

  26. Huang GB, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern. 2011;2:107–22.

    Article  Google Scholar 

  27. Huang GB, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4):879–92.

    Article  PubMed  Google Scholar 

  28. Huang GB, Chen L. Convex incremental extreme learning machine. Neurocomputing. 2007;70:3056–62.

    Article  Google Scholar 

  29. Huang GB, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing. 2008;71:3460–8.

    Article  Google Scholar 

  30. Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multi-class classification. IEEE Trans Syst Man Cybern. 2012;42(2):513–29.

    Article  Google Scholar 

  31. Frénay B, Verleysen M. Using SVMs with randomized feature spaces: an extreme learning approach. In: Proceedings of the 18th European symposium on artificial neural networks (ESANN), Bruges, Belgium, 28–30 April 2010; 2010. p. 315–20.

  32. Frénay B, Verleysen M. Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing. 2011;74(16):2526–31.

    Article  Google Scholar 

  33. Huang GB, Li M, Chen L, Siew C-K CK. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing. 2008;71:576–83.

    Article  Google Scholar 

  34. Liang N, Huang GB, Saratchandran P, Sundararajan N. A fast and accurate on-line sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw. 2006;17(6):1411–23.

    Article  PubMed  Google Scholar 

  35. Rong HJ, Huang GB, Sundararajan N, Saratchandran P. Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern. 2009;39(4):1067–72.

    Article  Google Scholar 

  36. Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing. 2011;74:2438–43.

    Article  Google Scholar 

  37. Rong H, Ong YS, Tan AH, Zhu Z. A fast pruned extreme learning machine for classification problem. Neurocomputing. 2008;72:359–66.

    Article  Google Scholar 

  38. Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A. OP-ELM: optimally-pruned extreme learning machine. IEEE Trans Neural Netw. 2010;21(1):158–62.

    Article  PubMed  Google Scholar 

  39. Decherchi S, Gastaldo P, Zunino R, Cambria E, Redi J. Circular-ELM for the reduced-reference assessment of perceived image quality. Neurocomputing. 2013;102:78–89.

    Article  Google Scholar 

  40. van Heeswijk M, Miche Y, Lindh-Knuutila T, Hilbers PA, Honkela T, Oja E, Lendasse A. Adaptive ensemble models of extreme learning machines for time series prediction. Lect Notes Comput Sci. 2009;5769:305–14.

    Article  Google Scholar 

  41. van Heeswijk M, Miche Y, Oja E, Lendasse A. Gpu accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing. 2011;74:2430–7.

    Article  Google Scholar 

  42. Man ZH, Lee K, Wang DH, Cao ZW, Miao CY. A new robust training algorithm for a class of single-hidden layer feedforward neural networks. Neurocomputing. 2011;74:2491–501.

    Article  Google Scholar 

  43. Man ZH, Lee K, Wang DH, Cao ZW, Miao CY. A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes. In: 2011 6th IEEE conference on industrial electronics and applications; 2011. p. 2524–9.

  44. Cheng C, Tay WP, Huang GB. Extreme learning machines for intrusion detection. In: International joint conference on neural networks (IJCNN); 2012. p. 1–8.

  45. Nian R, He B, Lendasse A. 3D object recognition based on a geometrical topology model and extreme learning machine. Neural Comput Appl. 2012;22(3–4):427–33.

    Google Scholar 

  46. Wang GR, Zhao Y, Wang D. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing. 2008;72:262–8.

    Article  Google Scholar 

  47. Bartlett PL. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inf Theory. 1998;44(2):525–36.

    Article  Google Scholar 

  48. Hansen LK, Salamon P. Neural network ensemble. IEEE Trans Pattern Anal Mach Intell. 1990;12(10):993–1001.

    Article  Google Scholar 

Download references

Acknowledgments

This work was fully supported by the Natural Science Foundation of People’s Republic of China (41176076) and the Natural Science Foundation of People’s Republic of China (31202036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Nian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, B., Xu, D., Nian, R. et al. Fast Face Recognition Via Sparse Coding and Extreme Learning Machine. Cogn Comput 6, 264–277 (2014). https://doi.org/10.1007/s12559-013-9224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-013-9224-1

Keywords

Navigation