Skip to main content
Log in

Thiol redox biochemistry: insights from computer simulations

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Thiol redox chemical reactions play a key role in a variety of physiological processes, mainly due to the presence of low-molecular-weight thiols and cysteine residues in proteins involved in catalysis and regulation. Specifically, the subtle sensitivity of thiol reactivity to the environment makes the use of simulation techniques extremely valuable for obtaining microscopic insights. In this work we review the application of classical and quantum–mechanical atomistic simulation tools to the investigation of selected relevant issues in thiol redox biochemistry, such as investigations on (1) the protonation state of cysteine in protein, (2) two-electron oxidation of thiols by hydroperoxides, chloramines, and hypochlorous acid, (3) mechanistic and kinetics aspects of the de novo formation of disulfide bonds and thiol−disulfide exchange, (4) formation of sulfenamides, (5) formation of nitrosothiols and transnitrosation reactions, and (6) one-electron oxidation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Fig. 6

Similar content being viewed by others

Abbreviations

Cys:

L-cysteine

CysS- :

Cysteinate

CysSOH:

Cysteine sulfenic acid

DFT:

Density functional theory

GPx:

Glutathione peroxidase

GSH:

Glutathione

MD:

Molecular dynamics

MM:

Molecular mechanics

Prx:

Peroxiredoxin

QM:

Quantum mechanics

ROS:

Reactive oxygen species

References

  • Abkevich VI, Shakhnovich EI (2000) What can disulfide bonds tell us about protein energetics, function and folding: simulations and bioninformatics analysis. J Mol Biol 300:975–985

    CAS  PubMed  Google Scholar 

  • Ackermann KR, Koster J, Schlücker S (2009) Conformations and vibrational properties of disulfide bridges: Potential energy distribution in the model system diethyl disulfide. Chem Phys 355:81–84

    CAS  Google Scholar 

  • Alexov E, Mehler EL, Baker N, Baptista AM, Huang Y, Milletti F, Nielsen JE, Farrell D, Carstensen T, Olsson MHM, Shen JK, Warwicker J, Williams S, Word JM (2011) Progress in the prediction of pKa values in proteins. Proteins 79:3260–3275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    CAS  PubMed  Google Scholar 

  • Anderson BD, Luo D (2006) Application of an exact mathematical model and the steady-state approximation to the kinetics of the reaction of cysteine and hydrogen peroxide in aqueous solution: a reply to the Ashby and Nagy commentary. J Pharm Sci 95:19–24

    CAS  PubMed  Google Scholar 

  • Angelo M, Singel DJ, Stamler JS (2006) An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate. Proc Natl Acad Sci USA 103:8366–8371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arulsamy N, Bohle DS, Butt JA, Irvine GJ (1999) Interrelationships between conformational dynamics and the redox chemistry of S-nitrosothiols. J Am Chem Soc 121:7115–7123

    CAS  Google Scholar 

  • Ashby MT, Nagy P (2006a) On the kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J Pharm Sci 95:15–18

    CAS  PubMed  Google Scholar 

  • Ashby MT, Nagy P (2006b) Revisiting a proposed kinetic model for the reaction of cysteine and hydrogen peroxide via cysteine sulfenic acid. Int J Chem Kinet 39:32–38

    Google Scholar 

  • Bach RD, Dmitrenko O, Thorpe C (2008) Mechanism of thiolate−disulfide interchange reactions in biochemistry. J Org Chem 73:12–21

    CAS  PubMed  Google Scholar 

  • Bachrach SM, Hayes JM, Dao T, Mynar JL (2002) Density functional theory gas- and solution-phase study of nucleophilic substitution at di- and trisulfides. Theor Chem Acc 107:266–271

    CAS  Google Scholar 

  • Bachrach SM, Mulhearn DC (1996) Nucleophilic substitution at sulfur: SN2 or addition-elimination? J Phys Chem 100:3535–3540

    CAS  Google Scholar 

  • Bachrach SM, Pereverzev A (2005) Competing elimination and substitution reactions of simple acyclic disulfides. Org Biomol Chem 3:2095–2101

    CAS  PubMed  Google Scholar 

  • Baciu C, Gauld JW (2003) An assessment of theoretical methods for the calculation of accurate structures and SN bond dissociation energies of S-nitrosothiols (RSNOs). J Phys Chem A 107:9946–9952

    CAS  Google Scholar 

  • Barford D (2004) The role of cysteine residues as redox-sensitive regulatory switches. Curr Opin Struct Biol 14:679–686

    CAS  PubMed  Google Scholar 

  • Barnett DJ, McAnimly J, Williams DLH (1994) Transnitrosation between nitrosothiols and thiols. J Chem Soc Perkin Trans 2:1131–1133

    Google Scholar 

  • Barnett DJ, Rios A, Williams DLH (1995) NO- group transfer (transnitrosation) between S-nitrosothiols and thiols II. J Chem Soc Perkin Trans 2:1279–1282

    Google Scholar 

  • Bartberger MD, Houk KN, Powell SC, Mannion JD (2000) Theory, spectroscopy, and crystallographic analysis of S-nitrosothiols: conformational distribution dictates spectroscopic behavior. J Am Chem Soc 122:5889–5890

    CAS  Google Scholar 

  • Bartberger MD, Mannion JD, Powel SC, Stamler JS (2001) SN dissociation energies of S-nitrosothiols: on the origins of nitrosothiol decomposition rates. J Am Chem Soc 123:8868–8869

    CAS  PubMed  Google Scholar 

  • Barton JP, Packer JE, Sims RJ (1973) Kinetics of the reaction of hydrogen peroxide with cysteine and cysteamine. J. Chem. Soc., Perkin Trans 2:1547–1549

    Google Scholar 

  • Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73:765–783

    CAS  PubMed  Google Scholar 

  • Bashford D, Karplus M (1990) pKa’s of Ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29:10219–10225

    CAS  PubMed  Google Scholar 

  • Basu S, Keszler A, Azarova NA, Nwanze N, Perlegas A, Shiva S, Broniowska KA, Hogg N, Kim-Shapiro DB (2010) A novel role for cytochrome c: efficient catalysis of S-nitrosothiol formation. Free Radic Biol Med 48:255–263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharjee S, Deterding LJ, Jiang J, Bonini MG, Tomer KB, Ramirez DC, Mason RP (2007) Electron transfer between a tyrosyl radical and a cysteine residue in hemoproteins: spin trapping analysis. J Am Chem Soc 129:13493–13501

    CAS  PubMed  Google Scholar 

  • Bayse CA (2011) Transition states for cysteine redox processes modeled by DFT and solvent-assisted proton exchange. Org Biomol Chem 9:4748–4751

    CAS  PubMed  Google Scholar 

  • Becker A, Kabsch W (2002) X-ray structure of pyruvate formate-lyase in complex with pyruvate and CoA—How the enzyme uses the Cys-418 thiyl radical for pyruvate cleavage. J Biol Chem 277:40036–40042

    CAS  PubMed  Google Scholar 

  • Benassi R, Fiandri GL, Taddei F (1997) A theoretical MO ab initio approach to the conformational properties and homolytic bond cleavage in aryl disulphides. J Mol Struc-Theochem 418:127–138

    CAS  Google Scholar 

  • Bharadwaj VS, Dean AM, Maupin CM (2013) Insights into the glycyl radical enzyme active site of benzylsuccinate synthase: a computational study. J Am Chem Soc 135:12279–12288

    Google Scholar 

  • Boese M, Mordvintcev P, Vanin AF, Busse R, Mulsch A (1995) S-nitrosation of serum albumin by dinitrosyl-iron complex. J Biol Chem 270:29244–29249

    CAS  PubMed  Google Scholar 

  • Boyd RJ, Perkyns JS, Ramani R (1983) Conformations of simple disulfides and L-cystine. Can J Chem 61:1082–1085

    CAS  Google Scholar 

  • Brandes N, Schmitt S, Jakob U (2009) Thiol-based redox switches in eukaryotic proteins. Antiox Redox Signal 11:997–1014

    CAS  Google Scholar 

  • Bredt DS, Snyder SH (1993) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Google Scholar 

  • Broniowska KA, Keszler A, Basu S, Kim-Shapiro DB, Hogg N (2012) Cytochrome c-mediated formation of S-nitrosothiol in cells. Biochem J 442:191–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, Feelish JR (2004) Cellular targets and mechanisms of nitros (yl) ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci USA 101:4308–4313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buckel W (2013) Bacterial methanogenesis proceeds by a radical mechanism. Angew Chem Int Ed 52:2–5

    Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, a-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    CAS  PubMed  Google Scholar 

  • Buhrman G, Parker B, Sohn J, Rudolph J, Mattos C (2005) Structural mechanism of oxidative regulation of the phosphatase Cdc25B via an intramolecular disulfide bond. Biochemistry 44:5307–5316

    CAS  PubMed  Google Scholar 

  • Bulaj G, Kortemme T, Goldenberg DP (1998) Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37:8965–8972

    Google Scholar 

  • Canet-Avilés RM, Wilson M, Miller DW, Ahmad R, McLendon C et al (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA 101:9103–9108

    PubMed Central  PubMed  Google Scholar 

  • Canle López M, Ramos DR, Santaballa JA (2005) A DFT study on the microscopic ionization of cysteine in water. Chem Phys Lett 417:28–33

    Google Scholar 

  • Cárdenas-Jirón GI, Cárdenas-Lailhacar C, Toro-Labbé A (1993) Theoretical analysis of the internal rotation, molecular structures and electronic properties of the XSSX series of molecules (X = H, F, Cl). J Mol Struc-Theochem 282:113–122

    Google Scholar 

  • Cardey B, Enescu M (2005) A computational study of thiolate and selenolate oxidation by hydrogen peroxide. ChemPhysChem 6:1175–1180

    CAS  PubMed  Google Scholar 

  • Cardey B, Enescu M (2007) Selenocysteine versus cysteine reactivity: A theoretical study of their oxidation by hydrogen peroxide. J Phys Chem A 111:673–678

    CAS  PubMed  Google Scholar 

  • Cardey B, Enescu M (2009) Cysteine oxidation by the superoxide radical: a theoretical study. ChemPhysChem 10:1642–1648

    CAS  PubMed  Google Scholar 

  • Cardey B, Foley S, Enescu M (2007) Mechanism of thiol oxidation by the superoxide radical. J Phys Chem A 111:13046–13052

    CAS  PubMed  Google Scholar 

  • Chu JW, Trout BL (2004) On the mechanisms of oxidation of organic sulfides by H2O2 in aqueous solutions. J Am Chem Soc 126:900–908

    CAS  PubMed  Google Scholar 

  • Colebrook LD, Tarbell DS (1961) Evidence for hydrogen bonding in thiols from NMR measurements. Proc Natl Acad Sci USA 47:993–996

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    CAS  Google Scholar 

  • Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Trainer JA (1998) Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279:2121–2126

    CAS  PubMed  Google Scholar 

  • Crespo A, Marti MA, Estrin DA, Roitberg AE (2005) Multiple-steering QM-MM calculation of the free energy profile in chorismate mutase. J Am Chem Soc 127:6940–6941

    CAS  PubMed  Google Scholar 

  • Crespo A, Marti MA, Roitberg AE, Amzel M, Estrin DA (2006) The catalytic mechanism of peptidylglycine a-hydroxylating monooxygenase investigated by computer simulation. J Am Chem Soc 128:12817–12828

    CAS  PubMed  Google Scholar 

  • Crespo A, Scherlis DA, Martí MA, Ordejón P, Roitberg AE, Estrin DA (2003) A DFT-based QM-MM approach designed for the treatment of large molecular systems: application to chorismate mutase. J Phys Chem B 107:13728–13736

    CAS  Google Scholar 

  • Depuydt M, Messens J, Collet JF (2011) How proteins form disulfide bonds. Antioxid Redox Signal 15:49–66

    CAS  PubMed  Google Scholar 

  • Dixon DA, Zeroka D, Wendoloski JJ, Wasserman ZR (1985) The molecular structure of H2S2 and barriers to internal rotation. J Phys Chem 89:5334–5336

    CAS  Google Scholar 

  • Dokainish HM, Gauld JW (2013) A molecular dynamics and quantum mechanics/molecular mechanics study of the catalytic reductase mechanism of methionine sulfoxide reductase A: formation and reduction of a sulfenic acid. Biochemistry 52:1814–1827

    CAS  PubMed  Google Scholar 

  • Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE (2012) Biomolecular simulation: A computational microscope for molecular biology. Annu Rev Biophys 41:429–452

    CAS  PubMed  Google Scholar 

  • Dyson HJ, Jeng MF, Tennant LL, Slaby I, Lindell M, Cui DS, Kuprin S, Holmgren A (1997) Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Biochemistry 36:2622–2636

    CAS  PubMed  Google Scholar 

  • Edwards JO (1962) In: Edwards JO (ed) Peroxide reaction mechanisms, 1st edn. Interscience, New York, pp 67–106

    Google Scholar 

  • Eiamphungporn W, Soonsanga S, Lee J-W, Helmann JD (2009) Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro. Nucleic Acids Res 37:1174–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engström M, Vahtras O, Ågren H (2000) MCSCF and DFT calculations of EPR parameters of sulfur centered radicals. Chem Phys Lett 328:483–491

    Google Scholar 

  • Fava A, Iliceto A, Camera E (1957) Kinetics of the thiol-disulfide exchange. J Am Chem Soc 79:833–838

    CAS  Google Scholar 

  • Fehér K, Matthews RP, Kövér KE, Naidoo KJ, Szilágyi L (2011) Conformational preferences in diglycosyl disulfides: NMR and molecular modeling studies. Carbohydr Res 346:2612–2621

    PubMed  Google Scholar 

  • Fernandes PA, Ramos MJ (2004) Theoretical insights into the mechanism for thiol/disulfide exchange. Chem Eur J 10:257–266

    CAS  PubMed  Google Scholar 

  • Ferrer-Sueta G, Manta B, Botti H, Radi R, Trujillo M, Denicola A (2011) Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem Res Toxicol 24:434–450

    CAS  PubMed  Google Scholar 

  • Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4:161–177

    CAS  PubMed  Google Scholar 

  • Fitch CA, García-Moreno EB (2007) Structure-based pKa calculations using continuum electrostatics methods. Curr Protoc Bioinf Chapter 8:Unit 8.11. doi:10.1002/0471250953.bi0811s16.

  • Flohe L (2010) Changing paradigms in thiology from antioxidant defense toward redox regulation. Methods Enzymol 473:1–39

    CAS  PubMed  Google Scholar 

  • Folkes LK, Trujillo M, Bartesaghi S, Radi R, Wardman P (2011) Kinetics of reduction of tyrosine phenoxyl radicals by glutathione. Arch Biochem Biophys 506:242–249

    CAS  PubMed  Google Scholar 

  • Foloppe N, Nilsson L (2007) Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants. J Mol Biol 372:798–816

    CAS  PubMed  Google Scholar 

  • Fomenko DE, Marino SM, Gladyshev VN (2008) Functional diversity of cysteine residues in proteins and unique features of catalytic redox-active cysteines in thiol oxidoreductases. Mol Cells 26:228–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geronimo I, Chéron N, Fleurat-Lessard P, Dumont E (2009) How does microhydration impact on structure, spectroscopy and formation of disulfide radical anions? An ab initio investigation on dimethyldisulfide. Chem Phys Lett 481:173–179

    CAS  Google Scholar 

  • Gilbert HF (1990) Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63:69–172

    Google Scholar 

  • Giles N, Watts A, Giles G, Fry F (2003) Metal and redox modulation of cysteine protein function. Chem Biol 10:677–693

    CAS  PubMed  Google Scholar 

  • Goldman RK, Vlessis AA, Trunkey DD (1998) Nitrosothiol quantification in human plasma. Anal Biochem 259:98–103

    CAS  PubMed  Google Scholar 

  • Goldstein S, Czapski G (1995) The reaction of NO. with O2 .- and HO2 .: a pulse radiolysis study. Free Radic Biol Med 19:505–510

    CAS  PubMed  Google Scholar 

  • Goldstein S, Czapski G (1996) Mechanism of the nitrosation of thiols and amines by oxygenated no solutions: the nature of the nitrosating intermediates. J Am Chem Soc 118:3419–3425

    CAS  Google Scholar 

  • González Lebrero MC, Perissinotti LL, Estrin DA (2005) Solvent effects on peroxynitrite structure and properties from QM/MM simulations. J Phys Chem A 109:9598–9604

    PubMed  Google Scholar 

  • Gow AJ, Buerk DG, Ischiropoulos H (1997) A novel reaction mechanism for the formation of S-nitrosothiol in vivo. J Biol Chem 272:2841–2845

    CAS  PubMed  Google Scholar 

  • Gross SS, Wolin MS (1995) Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57:737–769

    CAS  PubMed  Google Scholar 

  • Grossi L, Montevecchi PC (2002) A kinetic study of S–nitrosothiol decomposition. Chem Eur J 8:380–387

    CAS  PubMed  Google Scholar 

  • Hall A, Parsonage D, Poole LB, Karplus PA (2010) Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J Mol Biol 402:194–209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929

    CAS  PubMed  Google Scholar 

  • Hayes JM, Bachrach SM (2003) Effect of micro and bulk solvation on the mechanism of nucleophilic substitution at sulfur in disulfides. J Phys Chem A 107:7952–7961

    CAS  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nature Rev Mol Cell Biol 6:150–166

    CAS  Google Scholar 

  • Heverly-Coulson GS, Boyd RJ (2009) Reduction of hydrogen peroxide by glutathione peroxidase mimics: reaction mechanism and energetics. J Phys Chem A 114:1996–2000

    Google Scholar 

  • Hofstetter D, Nauser T, Koppenol WH (2007) The glutathione thiyl radical does not react with nitrogen monoxide. Biochem Biophys Res Commun 360:146–148

    CAS  PubMed  Google Scholar 

  • Hogg N (1999) The kinetics of S-transnitrosation: a reversible second-order reaction. Anal Biochem 272:257–262

    CAS  PubMed  Google Scholar 

  • Hogg N, Singh RJ, Kalyanaraman B (1996) The role of glutathione in the transport and catabolism of nitric oxide. FEBS Lett 382:223–228

    CAS  PubMed  Google Scholar 

  • Honda M, Tajima M (1986) Ab initio study of disulfide bond: Part I. Contribution of d polarization functions. J Mol Struc-Theochem 136:93–98

    Google Scholar 

  • Honda M, Tajima M (1990) Ab initio study of disulphide bond: Part II. The change in atomic distance between sulphur atoms on the reduction of disulphide to dithiol. J Mol Struc-Theochem 204:247–252

    Google Scholar 

  • Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149

    CAS  PubMed  Google Scholar 

  • Houk NK, Hietbrink BH, Bartberger MD, McCarren PR, Choi BY, Voyksner RD, Stamler JS, Toone EJ (2003) Nitroxyl disulfides, novel intermediates in transnitrosation reactions. J Am Chem Soc 125:6972–6976

    CAS  PubMed  Google Scholar 

  • Hudáky I, Gáspári Z, Carugo O, Čemažar M, Pongor S, Perczel A (2004) Vicinal disulfide bridge conformers by experimental methods and by ab initio and DFT molecular computations. Proteins 55:152–168

    PubMed  Google Scholar 

  • Hugo M, Turell L, Manta B, Botti H, Monteiro G, Netto LES, Alvarez B, Radi R, Trujillo M (2009) Thiol and sulfenic acid oxidation of AphE, the one-cystein peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics. Biochemistry 48:9416–9426

    CAS  PubMed  Google Scholar 

  • Ignarro LJ (1999) Nitric oxide: a unique endogenous signaling molecule in vascular biology (Nobel lecture). Angew Chem Int Ed 38:1882–1892

    CAS  Google Scholar 

  • Incze K, Farkas J, Mihalys V, Zukal E (1974) Antibacterial effect of cysteine-nitrosothiol and possible percursors thereof. Appl Microbiol 27:202–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jao SC, English Ospina SM, Berdis AJ, Starke DW, Post CB, Mieyal JJ (2006) Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis. Biochemistry 45:4785–4796

    CAS  PubMed  Google Scholar 

  • Jensen KS, Hansen RE, Winther JR (2009) Kinetic and thermodynamic aspects of cellular thiol-disulfide redox regulation. Antioxid Redox Signal 11:1047–1058

    Google Scholar 

  • Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:849–868

    Google Scholar 

  • Jourd’heuil D, Jourd’heuil FL, Feelish M (2003) Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide evidence for a free radical mechanism. J Biol Chem 278:15720–15726

    PubMed  Google Scholar 

  • Kadokura H, Katzen F, Beckwith J (2003) Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72:111–135

    CAS  PubMed  Google Scholar 

  • Kassim R, Ramseyer C, Enescu M (2011) Oxidation of zinc-thiolate complexes of biological interest by hydrogen peroxide: a theoretical study. Inorg Chem 50:5407–5416

    CAS  PubMed  Google Scholar 

  • Katz BA, Kossiakoff A (1986) The crystallographically determined structures of atypical strained disulfides engineered into subtilisin. J Biol Chem 261:15480–15485

    CAS  PubMed  Google Scholar 

  • Keire DA, Strauss E, Guo W, Noszal B, Rabenstein DL (1992) Kinetics and equilibria of thiol/disulfide interchange reactions of selected biological thiols and related molecules with oxidized glutathione. J Org Chem 57:123–127

    CAS  Google Scholar 

  • Kerwin JF, Lancaster JR, Feldman PL (1995) Nitric oxide: a new paradigm for second messengers. J Med Chem 38:4343–4362

    CAS  PubMed  Google Scholar 

  • Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH (1997) Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol 10:1285–1292

    CAS  PubMed  Google Scholar 

  • Kóňa J, Brinck T (2006) A combined molecular dynamics simulation and quantum chemical study on the mechanism for activation of the OxyR transcription factor by hydrogen peroxide. Org Biomol Chem 4:3468–3478

    PubMed  Google Scholar 

  • Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842

    CAS  PubMed  Google Scholar 

  • Laio A, Parrinello M (2002a) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562–12566

    CAS  Google Scholar 

  • Laio A, VandeVondele J, Rothlisberger U (2002b) A Hamiltonian electrostatic coupling scheme for hybrid Car–Parrinello molecular dynamics simulations. J Chem Phys 116:6941–6947

    CAS  Google Scholar 

  • Lee J, Soonsanga S, Helmann JD (2007) A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc Natl Acad Sci USA 104:8743–8748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li F, Bravo-Rodriguez K, Phillips C, Seidel RW, Wieberneit F, Stoll R, Doltsinis NL, Sanchez-Garcia E, Sander W (2013) Conformation and dynamics of a cyclic disulfide-bridged peptide: effects of temperature and solvent. J Phys Chem B 117:3560–3570

    CAS  PubMed  Google Scholar 

  • Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61:704–721

    CAS  PubMed  Google Scholar 

  • Li J, Wang PH, Schlegel HB (2006) A computational exploration of some transnitrosation and thiolation reactions involving CH3SNO, CH3ONO and CH3NHNO. Org Biomol Chem 4:1352–1364

    CAS  PubMed  Google Scholar 

  • Lim JC, Gruschus JM, Kim G, Berlett BS, Tjandra N, Levine RL (2012) A low pKa cysteine at the active site of mouse methionine sulfoxide reductase A. J Biol Chem 287:25596–25601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Miller MJS, Joshi MS, Thomas DD, Lancaster JR (1998) Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci USA 95:2175–2179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lo Conte M, Carroll KS (2012) The chemistry of thiol oxidation and detection. In: Jakob U (ed) Oxidative stress and redox regulation, 1st edn. Springer, New York, pp 1–51

    Google Scholar 

  • Lu JM, Wittbrodt JM, Wang K, Wen Z (2001) NO affinities of S-nitrosothiols: a direct experimental and computational investigation of RS-NO bond dissociation energies. J Am Chem Soc 123:2903–2904

    CAS  PubMed  Google Scholar 

  • Luo D, Smith SW, Anderson BD (2005) Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J Pharm Sci 94:304–316

    CAS  PubMed  Google Scholar 

  • MacKerell AD Jr, Feig M, Brooks CL III (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    CAS  PubMed  Google Scholar 

  • Madej E, Folkes LK, Wardman P, Czapski G, Goldstein S (2008) Thiyl radicals react with nitric oxide to form S-nitrosothiols with rate constants near the diffusion-controlled limit. Free Radic Biol Med 44:2013–2018

    CAS  PubMed  Google Scholar 

  • Manta B, Hugo M, Ortiz C, Ferrer-Sueta G, Trujillo M, Denicola A (2009) The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch Biochem Biophys 484:146–154

    CAS  PubMed  Google Scholar 

  • Marino SM, Gladyshev VN (2011) Redox biology: computational approaches to the investigation of functional cysteine residues. Antioxid Redox Signal 15:135–146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marino SM, Gladyshev VN (2012) Analysis and functional prediction of reactive cysteine residues. J Biol Chem 287:4419–4425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marletta MA (1993) Nitric oxide synthase structure and mechanism. J Biol Chem 268:12231–12234

    CAS  PubMed  Google Scholar 

  • Miki H, Funato Y (2012) Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem 151:255–261

    CAS  PubMed  Google Scholar 

  • Moller MN, Li Q, Vitturi DA, Robinson JM, Lancaster JR, Denicola A (2007) Membrane “lens” effect: focusing the formation of reactive nitrogen oxides from the NO/O2 reaction. Chem Res Toxicol 20:709–714

    PubMed  Google Scholar 

  • Mossner E, Huber-Wunderlich M, Glockshuber R (1998) Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxido- reductases. Protein Sci 7:1233–1244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Munro AP, Williams DLH (2000) Reactivity of sulfur nucleophiles towards S-nitrosothiols. J Chem Soc Perkin Trans 2:1794–1797

    Google Scholar 

  • Nagababu E, Ramasamy S, Rifkind JM (2006) S-Nitrosohemoglobin: A mechanism for its formation in conjunction with nitrite reduction by deoxyhemoglobin. Nitric Oxide 15:20–29

    CAS  PubMed  Google Scholar 

  • Nagy P, Ashby MT (2007) Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J Am Chem Soc 129:14082–14091

    CAS  PubMed  Google Scholar 

  • Nagy P, Karton A, Betz A, Peskin AV, Pace P, O’Reilly RJ, Winterbourn CC (2011) Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide a kinetic and computational study. J Biol Chem 286:18048–18055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy P (2013) Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid Redox Signal 18:1623–1641

    CAS  PubMed  Google Scholar 

  • Nathan C, Xie Q (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269:13725–13728

    CAS  PubMed  Google Scholar 

  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira MG, Shishido SM, Seabra AB, Morgon NH (2002) Thermal stability of primary S-nitrosothiols: roles of autocatalysis and structural effects on the rate of nitric oxide release. J Phys Chem A 106:8963–8970

    Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park S, Kahlili-Araghi F, Tajkhorshid E, Schulten K (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J Chem Phys 119:3559–3567

    CAS  Google Scholar 

  • Parker AJ, Kharasch N (1959) The scission of the sulfur-sulfur bond. Chem Rev 59:583–628

    CAS  Google Scholar 

  • Parsonage D, Youngblood DS, Sarma GN, Wood ZA, Karplus PA, Poole LB (2005) Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44:10583–10592

    CAS  PubMed  Google Scholar 

  • Paulsen CE, Carroll KS (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5:47–62

    CAS  PubMed  Google Scholar 

  • Pearson JK, Boyd RJ (2006) Modeling the reduction of hydrogen peroxide by glutathione peroxidase mimics. J Phys Chem A 110:8979–8985

    CAS  PubMed  Google Scholar 

  • Pearson JK, Boyd RJ (2007) Density functional theory study of the reaction mechanism and energetics of the reduction of hydrogen peroxide by ebselen, ebselen diselenide, and ebselen selenol. J Phys Chem A 111:3152–3160

    CAS  PubMed  Google Scholar 

  • Perissinotti LL, Estrin DA, Leitus G, Doctorovich FJ (2006) A surprisingly stable S-nitrosothiol complex. J Am Chem Soc 128:2515–2513

    Google Scholar 

  • Perissinotti LL, Leitus G, Shimon L, Estrin DA, Doctorovich F (2008) A unique family of stable and water-soluble S-nitrosothiol complexes. Inorg Chem 47:4723–4733

    CAS  PubMed  Google Scholar 

  • Perissinotti LL, Turjanski AG, Estrin DA, Doctorovich F (2005) Transnitrosation of nitrosothiols: characterization of an elusive intermediate. J Am Chem Soc 127:486–487

    CAS  PubMed  Google Scholar 

  • Perry LJ, Wetzel R (1984) Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation. Science 226:555–557

    CAS  PubMed  Google Scholar 

  • Peskin AV, Cox AG, Nagy P, Morgan PE, Hampton MB, Davies MJ, Winterbourn CC (2010) Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3. Biochem J 432:313–321

    CAS  PubMed  Google Scholar 

  • Peskin AV, Dickerhof N, Poynton RA, Paton LN, Pace PE, Hampton MB, Winterbourn CC (2013) Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. J Biol Chem 288:14170–14177

    CAS  PubMed  Google Scholar 

  • Peskin AV, Winterbourn CC (2001) Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med 30:572–579

    CAS  PubMed  Google Scholar 

  • Petruk AA, Bartesaghi S, Trujillo M, Estrin DA, Murgida D, Kalyanaraman B, Marti M, Radi R (2012) Molecular basis of intramolecular electron transfer in proteins during radical-mediated oxidations: Computer simulation studies in model tyrosine–cysteine peptides in solution. Arch Biochem Biophys 525:82–91

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prütz WA, Butler J, Land EJ, Swallow AJ (1989) The role of sulphur peptide functions in free radical transfer: a pulse radiolysis study. Int J Radiat Biol 55:539–556

    PubMed  Google Scholar 

  • Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:699–722

    Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250

    CAS  PubMed  Google Scholar 

  • Rao BNN, Kumar A, Balaram H, Ravi A, Balaram P (1983) Nuclear Overhauser effects and circular dichroism as probes of β-turn conformations in acyclic and cyclic peptides with pro-X sequences. J Am Chem Soc 105:7423–7428

    CAS  Google Scholar 

  • Reyes AM, Hugo M, Trostchansky A, Capece L, Radi R, Trujillo M (2011) Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation. Free Radic Biol Med 51:464–473

    CAS  PubMed  Google Scholar 

  • Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo H (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17:183–189

    CAS  PubMed  Google Scholar 

  • Rockett KA, Awburn MM, Cowden WB, Clark IA (1991) Killing of Plasmodium falciparum in vitro by nitric oxide derivatives. Infect Immun 59:3280–3283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romero N, Radi R, Linares E, Augusto O, Detweiler CD, Mason RP, Denicola A (2003) Reaction of human hemoglobin with peroxynitrite isomerization to nitrate and secondary formation of protein radicals. J Biol Chem 278:44049–44057

    CAS  PubMed  Google Scholar 

  • Roos G, Foloppe N, Messens J (2013a) Understanding the pKa of redox cysteines: the key role of hydrogen bonding. Antioxid Redox Signal 18:94–127

    CAS  PubMed  Google Scholar 

  • Roos G, De Proft F, Geerlings P (2013b) Electron capture by the thiyl radical and disulfide bond: ligand effects on the reduction potential. Chem Eur J 19:5050–5060

    CAS  PubMed  Google Scholar 

  • Roos G, Foloppe N, Van Laer K, Wyns L, Nilsson L, Geerlings P, Messens J (2009) How thioredoxin dissociates its mixed disulfide. PloS Comp Biol 5:1000461

    Google Scholar 

  • Salmeen A, Andersen JN, Myers MP, Meng T-C, Hinks J et al (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423:769–773

    CAS  PubMed  Google Scholar 

  • Salsbury FR, Poole LB, Fetrow JS (2012a) Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model. Proteins 80:2583–2591

    CAS  PubMed  Google Scholar 

  • Salsbury FR, Yuan Y, Knaggs MH, Poole LB, Fetrow JS (2012b) Structural and electrostatic asymmetry at the active site in typical and atypical peroxiredoxin dimers. J Phys Chem B 116:6832–6843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez R, Riddle M, Woo J, Momand J (2008) Prediction of reversibly oxidized protein cysteine thiols using protein structure properties. Protein Sci 17:473–481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarma BK, Mugesh G (2007) Redox regulation of protein tyrosine phosphatase 1B (PTP1B): a biomimetic study on the unexpected formation of a sulfenyl amide intermediate. J Am Chem Soc 129:8872–8881

    CAS  PubMed  Google Scholar 

  • Savojardo C, Fariselli P, Martelli PL, Shukla P, Casadio R (2011) Prediction of the bonding state of cysteine residues in proteins with machine-learning methods. Lect Notes Comput Sc 6685:98–111

    CAS  Google Scholar 

  • Schmid N, Eichenberger A, Choutko A, Riniker S, Winger M, Mark A, van Gunsteren W (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856

    CAS  PubMed  Google Scholar 

  • Schrammel A, Gorren ACF, Schmidt K, Pfeiffer S, Mayer B (2003) S-nitrosation of glutathione by nitric oxide, peroxynitrite, and.NO/O2-. Free Radical Biol Med 34:1078–1088

    CAS  Google Scholar 

  • Sengupta D, Behera RN, Smith JC, Ullmann GM (2005) The alpha helix dipole: screened out? Structure 13:849–855

    CAS  PubMed  Google Scholar 

  • Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198–1229

    CAS  Google Scholar 

  • Seo YH, Carroll KS (2009) Facile synthesis and biological evaluation of a cell-permeable probe to detect redox-regulated proteins. Bioorg Med Chem Lett 19:356–359

    CAS  PubMed  Google Scholar 

  • Sevier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3:836–847

    CAS  PubMed  Google Scholar 

  • Singh R, Whitesides GM (1990) Comparisons of rate constants for thiolate−disulfide interchange in water and in polar aprotic solvents using dynamic proton NMR line shape analysis. J Am Chem Soc 112:1190–1197

    CAS  Google Scholar 

  • Singh SP, Wishnok JS, Keshive M, Deen WM, Tannenbaum SR (1996) The chemistry of the S-nitrosoglutathione/glutathione system. Proc Natl Acad Sci USA 93:14448–14433

    Google Scholar 

  • Sivaramakrishnan S, Keerthi K, Gates KS (2005) A chemical model for redox regulation of protein tyrosine phosphatase 1B (PTP1B) activity. J Am Chem Soc 127:10830–10831

    CAS  PubMed  Google Scholar 

  • Sjöberg L, Eriksen TE, Révész L (1982) The reaction of the hydroxyl radical with glutathione in neutral and alkaline aqueous solution. Radiat Res 89:255–263

    PubMed  Google Scholar 

  • Søndergaard CR, Olsson HMM, Rostkowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theory Comput 7:2284–2295

    Google Scholar 

  • Sonnhammer EL, Eddy SR, Durbin R (1997) Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28:405–420

    CAS  PubMed  Google Scholar 

  • Srinivasan N, Sowdhamini R, Ramakrishnan C, Balaram P (1990) Conformations of disulfide bridges in proteins. Int J Pept Protein Res 36:147–155

    CAS  PubMed  Google Scholar 

  • Stacey MM, Vissers MC, Winterbourn CC (2012) Oxidation of 2-cys peroxiredoxins in human endothelial cells by hydrogen peroxide, hypochlorous acid, and chloramines. Antioxid Redox Signal 17:411–421

    CAS  PubMed  Google Scholar 

  • Stubauer G, Guffre A, Sarti P (1999) Mechanism of S-nitrosothiol formation and degradation mediated by copper ions. J Biol Chem 274:28128–28133

    CAS  PubMed  Google Scholar 

  • Stubbe J, van Der Donk WA (1998) Protein radicals in enzyme catalysis. Chem Rev 98:705–762

    CAS  PubMed  Google Scholar 

  • Suzuki H, Fukushi K, Ikawa S, Konaka S (1990) Vibrational spectra and conformation of diallyl disulphide in the liquid state. J Mol Struc 221:141–148

    CAS  Google Scholar 

  • Swarts SG, Becker D, DeBolt S, Sevilla MD (1989) Electron spin resonance investigation of the structure and formation of sulfinyl radicals: reaction of peroxyl radicals with thiols. J Phys Chem 93:155–161

    CAS  Google Scholar 

  • Szacilowski A, Chmura SZ (2005) Interplay between iron complexes, nitric oxide and sulfur ligands: structure, (photo) reactivity and biological importance. Coord Chem Rev 249:2408–2436

    CAS  Google Scholar 

  • Talipov MR, Timerghazin QK (2013) Protein control of S-nitrosothiol reactivity: interplay of antagonistic resonance structures. J Phys Chem B 117:1827–1837

    CAS  PubMed  Google Scholar 

  • Tasker HS, Jones HO (1909) The action of mercaptans on acid chlorides. Part II. The acid chlorides of phosphorus, sulphur, and nitrogen. J Chem Soc 95:1910–1918

    CAS  Google Scholar 

  • Thurlkill RL, Grimsley GR, Scholtz JM, Pace CN (2006) pK values of the ionizable groups of proteins. Protein Sci 15:1214–1218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timerghazin QK, Talipov MR (2013) Unprecedented external electric field effects on S-nitrosothiols: possible mechanism of biological regulation? J Phys Chem Lett 4:1034–1038

    CAS  Google Scholar 

  • Timerghazin QK, Pelsherbe GH, English AM (2007) Resonance description of S-nitrosothiols: insights into reactivity. Org Lett 9:3049–3052

    CAS  PubMed  Google Scholar 

  • Timerghazin QK, English AM, Peslherbe GH (2008a) On the multireference character of S-nitrosothiols: a theoretical study of HSNO. Chem Phys Lett 454:24–29

    CAS  Google Scholar 

  • Timerghazin QK, Peslherbe GH, English AM (2008b) Structure and stability of HSNO, the simplest S-nitrosothiol. Phys Chem Chem Phys 10:1532–1539

    CAS  PubMed  Google Scholar 

  • Trujillo M, Clippe A, Manta B, Ferrer-Sueta G, Smeets A, Declercq JP, Knoops B, Radi R (2007) Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch Biochem Biophys 467:95–106

    CAS  PubMed  Google Scholar 

  • Trujillo M, Radi R (2002) Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: new insights into the reaction of peroxynitrite with thiols. Arch Biochem Biophys 397:91–98

    CAS  PubMed  Google Scholar 

  • Turell L, Botti H, Carballal S, Ferrer-Sueta G, Souza JM, Durán R, Freeman BA, Radi R, Alvarez B (2008) Reactivity of sulfenic acid in human serum albumin. Biochemistry 47:358–367

    CAS  PubMed  Google Scholar 

  • van der Kamp MW, Mulholland AJ (2013) Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52:2708–2728

    PubMed  Google Scholar 

  • van Gastel M, Lubitz W, Lassmann G, Neese F (2004) Electronic structure of the cysteine thiyl radical: a DFT and correlated ab initio study. JAm Chem Soc 126:2237–2246

    Google Scholar 

  • Wada A (1976) The alpha-helix as an electric macro-dipole. Adv Biophys 1–63

  • Wang K, Wen Z, Zhang W, Xian M, Cheng JP, Wang PG (2001) Equilibrium and kinetics studies of transnitrosation between S-nitrosothiols and thiols. Bioorg Med Chem Lett 11:433–436

    CAS  PubMed  Google Scholar 

  • Wang PG, Xian M, Tang X, Wu X (2002) Nitric oxide donors: chemical activities and biological applications. Chem Rev 102:1091–1134

    CAS  PubMed  Google Scholar 

  • Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249

    CAS  PubMed  Google Scholar 

  • Weinhold F, Landis CR, Valency, Bonding (2005) A natural bond orbital donor-aceptor perspective. Cambridge University Press, Cambridge

    Google Scholar 

  • Wennmohs F, Staemmler V, Schindler M (2003) Theoretical investigation of weak hydrogen bonds to sulfur. J Chem Phys 119:3208–3218

    CAS  Google Scholar 

  • Wetzel R, Perry LJ, Baase WA, Becktel WJ (1988) Disulfide bonds and thermal stability in T4 lysozyme. Proc Natl Acad Sci U S A 85:401–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson MA, Amour CVS, Collins JL, Ringe D, Petsko GA (2004) The 1.8 Å resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: A member of the DJ-1 ͞ ThiJ ͞ PfpI superfamily. Proc Natl Acad Sci USA 101:1531–1536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wink DA, Nims RW, Darbyshire JF, Christodoulou D, Hanbauer I, Cox GW, Laval F, Laval J, Cook JA (1994) Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol 7:519–525

    CAS  PubMed  Google Scholar 

  • Winterbourn CC (2013) In: Jakob U, Reichmann D (eds) Oxidative stress and redox regulation, 1st edn. Springer, Netherlands, pp 43–58

    Google Scholar 

  • Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45:549–561

    CAS  PubMed  Google Scholar 

  • Winterbourn CC, Metodiewa D (1994) The reaction of superoxide with reduced glutathione. Arch Biochem Biophys 314:284–290

    CAS  PubMed  Google Scholar 

  • Winterbourn CC, Metodiewa D (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 27:322–328

    CAS  PubMed  Google Scholar 

  • Wolf C, Hochgräfe F, Kusch H, Albrecht D, Hecker M et al (2008) Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants. Proteomics 8:3139–3153

    CAS  PubMed  Google Scholar 

  • Wong PSY, Hyun J, Fukuto JM, Shirota FN, DeMaster EG, Shoeman DW, Nagasawa HT (1998) Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry. Biochemistry 37:5362–5371

    CAS  PubMed  Google Scholar 

  • Yang A-S, Gunner MR, Sampogna R, Sharp K, Honig B (1993) On the calculation of pKas in proteins. Proteins 15:252–265

    CAS  PubMed  Google Scholar 

  • Yang J, Groen A, Lemeer S, Jans A, Slijper M et al (2007) Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide. Biochemistry 46:709–719

    CAS  PubMed  Google Scholar 

  • Yuan Y, Knaggsa MH, Poolec LB, Fetrowab JS, Salsbury FR (2010) Conformational and oligomeric effects on the cysteine pK(a) of tryparedoxin peroxidase. J Biomol Struct Dyn 28:51–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeida A, Babbush R, González Lebrero MC, Trujillo M, Radi R, Estrin DA (2012) Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: challenging the SN2 paradigm. Chem Res Toxicol 25:741–746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeida A, González Lebrero MC, Trujillo M, Radi R, Estrin DA (2013) Mechanism of cysteine oxidation by peroxynitrite: An integrated experimental and theoretical study. Arch Biochem Biophys 539:81–86

    CAS  PubMed  Google Scholar 

  • Zhang T, Bertelsen E, Alber T (1994) Entropic effects of disulphide bonds on protein stability. Nat Struct Biol 1:434–438

    CAS  PubMed  Google Scholar 

  • Zhang W, Chen J (2013) Efficiency of adaptive temperature-based replica exchange for sampling large-scale protein conformational transitions. J Chem Theory Comp 9:2849–2856

    CAS  Google Scholar 

  • Zhang H, Xu Y, Joseph J, Kalyanaraman B (2005) Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2-EPR spin trapping studies. J Biol Chem 280:40684–40698

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the University of Buenos Aires, ANPCyT (PICT-25667), and Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET). DAE and AT are CONICET staff researchers. AZ, CMG, and LAD acknowledge a CONICET fellowship. RR and MT acknowledge the financial support of the Howard Hughes Medical Institute, National Institutes of Health, Agencia Nacional de Investigación e Innovación (ANII, Uruguay) and Comisión Sectorial de Investigación Científica (CSIC), Universidad de la República.

Conflict of interests

None.

Animal study statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darío A. Estrin.

Additional information

Special Issue Advances in Biophysics in Latin America

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeida, A., Guardia, C.M., Lichtig, P. et al. Thiol redox biochemistry: insights from computer simulations. Biophys Rev 6, 27–46 (2014). https://doi.org/10.1007/s12551-013-0127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-013-0127-x

Keywords

Navigation