Skip to main content
Log in

An in vitro study of alkaline phosphatase sensitivity to mixture of aflatoxin B1 and fumonisin B1 in the hepatopancreas of coastal lagoon wild and farmed shrimp Litopenaeus vannamei

  • Original Article
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

This study aimed to establish the combined effect of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) on wild Litopenaeus vannamei hepatopancreas alkaline phosphatase (AP) activity compared with that of farmed shrimp. AP activity in hepatopancreas extract was confirmed by several specific inhibitor assays. AP activity of wild shrimp was higher than that of farmed shrimp (p < 0.05). However, AP activity from both wild and farmed shrimp was inhibited when incubated with AFB1 and FB1. The greatest inhibition occurred when AP was incubated with a mixture of AFB1 and FB1. The IC50 for AFB1 on AP activity of wild and farmed shrimp hepatopancreases was 0.790 and 0.398 μg/mL, respectively. The IC50 of FB1 was 0.87 μg/mL for wild shrimp and 0.69 μg/mL for farmed shrimp. These results suggest that, at the mycotoxins concentrations used in the study, AP from farmed L. vannamei was sensitive to the presence of both mycotoxins; however, AP is more sensitive to the combination of AFB1 + FB1 suggesting a possible synergistic or potentiating inhibitory effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2

Similar content being viewed by others

References

  • Amos K (1985) Procedures for the detection and identification of fish health section of certain fish pathogens. American Fisheries Society, Oregon

    Google Scholar 

  • Ásgeirsson B, Hartemink R, Chlebowski JF (1995) Alkaline phosphatase from Atlantic cod (Gadus morhua). Kinetic and structural properties which indicate adaptation to low temperatures. Comp Biochem Physiol B 110:315–329. doi:10.1016/0305-0491(94)00171-P

    Article  Google Scholar 

  • Bautista MN, Lavilla-Pitogo CR, Subosa PF, Begino ET (2006) Aflatoxin B1 contamination of shrimp feeds and its effect on growth and hepatopancreas of pre-adult Penaeus monodon. J Sci Food Agric 65:5–11. doi:10.1002/jsfa.2740650103

    Article  Google Scholar 

  • Bennett JM, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516. doi:10.1128/CMR.16.3.497-516.2003

  • Bintvihok A, Ponpornpisit A, Tangtrongpiros J, Panichkriangkrai W, Rattanapanee R, Doi K, Kumagai S (2003) Aflatoxin contamination in shrimp feed and effects of aflatoxin addition to feed on shrimp production. J Food Prot 66:882–885

    CAS  PubMed  Google Scholar 

  • Boonyaratpalin M, Supamattaya K, Verakunpiriya V, Supraser D (2001) Effect of aflatoxin B1 on growth performance, blood components, immune function and histopathological changes in black tiger shrimps (Penaeus monodon). Aquac Res 32:388–398. doi:10.1046/j.1355-557x.2001.00046.x

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Burgos-Hernández A, Farias SI, Torres-Arreola W, Ezquerra-Brauer JM (2005) In vitro studies of the effects of aflatoxin B1 and fumonisin B1 on trypsin-like and collagenase-like activity from the hepatopancreas of white shrimp (Litopenaeus vannamei). Aquaculture 250:399–410. doi:10.1016/j.aquaculture.2005.05.024

    Article  Google Scholar 

  • Carlson DB, Williams DE, Spitsbergen JM, Ross PF, Bacon CW, Meredith FI, Riley RT (2001) Fumonisin B1 promotes aflatoxin B1 and N-methyl-N′-nitro-nitrosoguanidine-initiated liver tumors in rainbow trout. Toxicol Appl Pharmacol 172:29–36

    Article  CAS  PubMed  Google Scholar 

  • Ceccaldi HJ (1997) Anatomy and physiology of the digestive system. In: D’Abramo LR, Conklin DE, Akiyama DM (eds) Crustacean nutrition: advances in world aquaculture. World Aquaculture Society, Baton Rouge, pp 261–291

    Google Scholar 

  • Chuang NN, Shih SL (1990) Purification and some properties of alkaline phosphatase from the hepatopancreas of the shrimp Penaeus japonicus (Crustacea: Decapoda). J Exp Zool A 256:1–7. doi:10.1002/jez.1402560102

    Article  CAS  Google Scholar 

  • Córdova-Murueta JH, García-Carreño FL, Navarrete del Toro MA (2004) Effects of stressors on shrimp digestive enzymes from assays of feces: an alternate method of evaluation. Aquaculture 233:439–449. doi:10.1016/j.aquaculture

    Article  Google Scholar 

  • Cuccioloni M, Mozzicafreddo M, Barocci S, Ciuti F, Re L, Eleuteri AM, Angeletti M (2009) Aflatoxin B1 misregulates the activity of serine proteases: possible implications in the toxicity of some mycotoxins. Toxicol in Vitro 23:393–399. doi:10.1016/j.tiv.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  • Filippov AA, Golovanova IL, Aminov AI (2013) Effect of organic pollutants on fish digestive enzymes: a review. Aquat Toxicol 6:155–160. doi:10.1134/S199508291302003X

  • Fukuda H, Shima H, Vesonder RF, Tokuda H, Nishino H, Katoh S, Tamura S, Takashi S, Nagao M (1996) Inhibition of protein serine/threonine phosphatases by fumonisin B1, a mycotoxin. Biochem Biophys Res Commun 220:160–165

    Article  CAS  PubMed  Google Scholar 

  • García-Morales MH, Pérez-Velázquez M, González-Féliz ML, Burgos-Hernández A, Cortez-Rocha MO, Bringas-Alvarado L, Ezquerra-Brauer JM (2015) Effects of fumonisin B1-containing feed on the muscle proteins and ice-storage life of white shrimp (Litopenaeus vannamei). J Aquat Food Prod Technol 24:340–353. doi:10.1080/10498850.2013.775621

    Article  Google Scholar 

  • Han D, Xie S, Zhu X, Yang Y, Guo Z (2009) Growth and hepatopancreas performance of gibel carp diets containing low levels of afaltoxin B1. Aquac Nutr 16:335–342. doi:10.1111/j.1365-2095.2009.00669.x

    Article  Google Scholar 

  • Harvey RB, Edrington TS, Kubena LF, Elissalde MH, Rottinghaus GE (1995) Influence of aflatoxin and fumonisin B1-containing culture material on growing barrows. Am J Vet Res 56:1668–1672

    CAS  PubMed  Google Scholar 

  • Hose JE, Lightner DV, Redman RM, Danald DA (1984) Observations on the pathogenesis of the imperfect fungus, Fusarium solani, in the California brown shrimp, Penaeus californiensis. J Invertebr Pathol 44:292–303. doi:10.1016/0022-2011(84)90027-2

    Article  Google Scholar 

  • Jobling M (1998) A review of the physiological and nutritional energetics of cod, Gadus morhua L., with particular reference to growth under farmed conditions. Aquaculture 70:1–19. doi:10.1016/0044-8486(88)90002-6

  • Kautsky N, Rönnbäck P, Tedengren M, Troell M (2000) Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture 191:145–161. doi:10.1016/S0044-8486(00)00424-5

    Article  Google Scholar 

  • Kitani H (1994) Identification of wild postlarvae of penaids shrimp, genus Penaeus, in the Pacific coast of Central America. Fish Sci 60:243–247. doi:10.2331/fishsci.60.243

    Google Scholar 

  • Kubena LF, Edrington TS, Kamps-Holtzapple C, Harvey RB, Elissalde MH, Rottinghaus E (1995) Effects of feeding fumonisin B1 present in Fusarium monoliforme culture material and aflatoxin singly and combination to turkey poults. Poult Sci 74:1295–1303. doi:10.3382/ps.0741295

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  • Lee AC, Chuang NN (1991) Characterization of different molecular forms of alkaline phosphatase in the hepatopancreas from the shrimp Penaues monodon (Crustacea: Decapoda). Comp Biochem Physiol B 99B:845–850. doi:10.1016/0305-0491(91)90152-4

    CAS  Google Scholar 

  • Lee NA, Wang S, Allan RD, Kennedy IR (2004) A rapid aflatoxin B1 ELISA: development and validation with reduced matrix effect for peanuts, corn, pistachio, and soybeans. J Agric Food Chem 52:2746–2755. doi:10.1021/jf0354038

    Article  CAS  PubMed  Google Scholar 

  • Lightner DV, Redman RM, Price RL, Wiseman MO (1982) Histopathology of aflatoxicosis in the marine shrimp Penaeus stylirostris and P. vannamei. J Invertebr Pathol 40:279–291. doi:10.1016/0022-2011(82)90127-6

  • Lu Z, Che W, Liu R, Hu X, Ding Y (2010) A novel method for high-level production of psychrophilic TAB5 alkaline phosphatase. Protein Expr Purif 74:217–222. doi:10.1016/j.pep.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  • Mata AT, Ferreira JP, Oliveira BR, Batoréu MC, Crespo MT, Pereira VJ, Bronze MR (2015) Bottled water: analysis mycotoxins by LC-MS/MS. Food Chem 176:455–464. doi:10.1016/j.foodchem.2014.12.088

    Article  CAS  PubMed  Google Scholar 

  • Mexia-Salazar AL, Burgos-Hernández A, Cortez-Rocha M, Hernandez-López J, Castro-Longoria R, Ezquerra-Brauer JM (2008) Role of fumonisin B1 addition on the immune system, histopathology, and muscle proteins white shrimp (Litopenaeus vannamei). Food Chem 110:471–479. doi:10.1016/j.foodchem.2008.02.028

    Article  CAS  PubMed  Google Scholar 

  • Nielsen I, Øverbø K, Olsen R (2001) Thermolabile alkaline phosphatase from Northern shrimp (Pandalus borealis): protein and cDNA sequence analyse. Comp Biochem Physiol 129B:853–861. doi:10.1016/S1096-4959(01)00391-8

    Article  Google Scholar 

  • Nomoto M, Ohsawa M, Wang H, Chen C, Yen K (1988) Purification and characterization of extracellular alkaline phosphatase from an alkalophilic bacterium. Agric Biol Chem 52:1643–1647. doi:10.1271/bbb1961.52.1643

    CAS  Google Scholar 

  • Olsen RL, Øvervø K, Myrnes B (1991) Alkaline phosphatase from the hepatopancreas of shrimp (Pandalus borealis): a dimeric enzyme with catalytically active subunits. Comp Biochem Physiol 99B:755–761. doi:10.1016/0305-0491(91)90139-5

    CAS  Google Scholar 

  • Ostrowski-Meissner HT, LeaMaster BR, Duerr E, Walsh WA (1995) Sensitivity of the Pacific white shrimp, Penaeus vannamei, to aflatoxin B1. Aquaculture 131:155–164. doi:10.1016/0044-8486(95)98125-U

    Article  CAS  Google Scholar 

  • Pascual C, Gaxiola G, Rosas C (2003) Blood metabolites and hemocyanin of the white shrimp, Litopenaeus vannamei: the effect of culture conditions and comparison with other crustacean species. Mar Biol 142:735–745. doi:10.1007/s00227-002-0995-2

    CAS  Google Scholar 

  • Rader BA, Kremer N, Apicella MA, Goldman EW, McFall-Ngaia MJ (2012) Modulation of symbiont lipid a signaling by host alkaline phosphatases in the squid-vibrio symbiosis. MBio 3:96–112. doi:10.1128/mBio.00093-12

    Article  Google Scholar 

  • Riley RT (1998) Mechanistic interactions of mycotoxins: theoretical consideration. In: Sinha KK, Bhatanagar D (eds) Mycotoxins in agriculture and food safety. Marcel Dekker Inc, Basel, pp 227–254

    Google Scholar 

  • Sadhu AK, Chowdhury DK, Mukhopadhyay PK (1985) Relationship between serum enzymes, histological features and enzymes in hepatopancreas after sublethal exposure to malathion and phosphamidon in the murrel Channa striatus (BL.). Int J Environ Stud 24:35–41. doi:10.1080/00207238508710174

    Article  CAS  Google Scholar 

  • SAGARPA (2015). Secretaria de Agricultura y Ganadería, Desarrollo Rural, Pesca y Alimentación. Comisión Nacional de Acuacultura y Pesca. http://www.conapesca.sagarpa.gob.mx/wb/cona/12de marzo mexico df. Accessed 30 November 2015

  • Šegviċ Klariċ M (2012) Adverse effects of combined mycotoxins. Arh Hig Rada Toksikol 63:519–530. doi:10.2478/10004-1254-63-2012-2299

    PubMed  Google Scholar 

  • Serrano AB, Font G, Mañes J, Ferrer E (2015) Dispersive liquid-liquid microextraction for the determination of emerging Fusarium mycotoxins in water. Food Anal Methods 9:856–863. doi:10.1007/s12161-015-0257-9

  • Speijers GJA, Speijers MHM (2004) Combined toxic effect of mycotoxins. Toxicol Lett 153:91–98. doi:10.1016/j.toxlet.2004.04.046

  • Supamattaya K, Sukrakanchana N, Boonyaratpalin M, Schatzmayr D, Chittiwan V (2005) Effects of ochratoxin A and deoxynivalenol on growth performance and immuno-physiological parameters in black tiger shrimp (Penaeus monodon). Songklanakarin J Sci Technol 27:91–99

    Google Scholar 

  • Tepšič K, Gunde-Cimerman N, Frisvand JC (1997) Growth and mycotoxin production by Aspergillus fumigatus strain isolated from a saltern. FEMS Microbiol Lett 157:9–12. doi:10.1016/S0378-1097(97)0044-8

    Article  Google Scholar 

  • Tomková I, Ševčíková Z, Levkut M, Revajová V, Čonková E, Laciaková A, Lenhardt L’ (2001) Effect of aflatoxin B1 on CD3T cells an alkaline phosphatase in the intestine of mice. Mycopathologia 154:15–19

    Article  Google Scholar 

  • Torres O, Matute J, Gelineau-van Waes J, Maddox JR, Gregory SG, Ashley-Koch AE, Showker JL, Voss KA, Riley RT (2015) Human health implications from co-exposure to aflatoxins and fumonisins in maize-based food in Latin America: Guatemala as a case study. World Mycotoxin J 8:143–159. doi:10.3920/WMJ2014.1736

    Article  Google Scholar 

  • Trevan JW (1927) The error of determination of toxicity. Proc R Soc Lond B Biol Sci 101:483–514. doi:10.1098/rspb.1927.0030

    Article  CAS  Google Scholar 

  • Van Belle H (1976) Alkaline phosphatase. I. Kinetics and inhibition by levamisole of purified isoenzymes from humans. Clin Chem 22:972–976

    PubMed  Google Scholar 

  • Wang S, Quan Y, Lee N, Keenedy IR (2006) Rapid determination of fumonisin B1 in food samples by enzyme immunosorbent assay and colloidal gold immunoassay. J Agric Food Chem 54:2491–2495. doi:10.1021/jf0530401

    Article  CAS  PubMed  Google Scholar 

  • Weibking TS, Ledoux DR, Brown TP, Rottinghaus GE (1993) Fumonisin toxicity in turkey poults. J Vet Diagn Investig 5:75–83. doi:10.1177/104063879300500116

    Article  CAS  Google Scholar 

  • Whitaker JR (1994) Principles of enzymology for the food sciences. Marcel Dekker, New York

    Google Scholar 

  • Wiseman M, Price RL, Lightner DV, Williams WR (1982) Toxicity of aflatoxin B1 to penaeid shrimp. Appl Environ Microbiol 44:1479–1481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng SL, Long WQ, Tian LX, Xie SW, Chen YJ, Yang HJ, Liu YJ (2015) Effects of dietary aflatoxin B1 on growth performance, body composition, haematological parameters and histopathology of juvenile Pacific white shrimp (Litopenaeus vannemei). Aquac Nutr. doi:10.1111/anu.12331

    Google Scholar 

  • Ziaei-Nejad S, Habibi M, Azari G, Lovett D, Mirvaghefi A, Shakouri M (2006) The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture 252:516–524. doi:10.1016/j.aquaculture.2005.07.021

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a CONACYT 154046 grant given to author Josafat Marina Ezquerra-Brauer. The author expresses gratitude to CONACYT for the scholarship given to Jesús Alberto Pérez-Acosta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marina Ezquerra-Brauer.

Ethics declarations

Conflict of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Acosta, J.A., Burgos-Hernandez, A., Velázquez-Contreras, C.A. et al. An in vitro study of alkaline phosphatase sensitivity to mixture of aflatoxin B1 and fumonisin B1 in the hepatopancreas of coastal lagoon wild and farmed shrimp Litopenaeus vannamei . Mycotoxin Res 32, 117–125 (2016). https://doi.org/10.1007/s12550-016-0246-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-016-0246-x

Keywords

Navigation