Skip to main content
Log in

Proteome analysis of Aspergillus ochraceus

  • Original Paper
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Genome sequencing for many important fungi has begun during recent years; however, there is still some deficiency in proteome profiling of aspergilli. To obtain a comprehensive overview of proteins and their expression, a proteomic approach based on 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry was used to investigate A. ochraceus. The cell walls of fungi are exceptionally resistant to destruction, therefore two lysis protocols were tested: (1) lysis via manual grinding using liquid nitrogen, and (2) mechanical lysis via rapid agitation with glass beads using MagNalyser. Mechanical grinding with mortar and pestle using liquid nitrogen was found to be a more efficient extraction method for our purpose, resulting in extracts with higher protein content and a clear band pattern in SDS-PAGE. Two-dimensional electrophoresis gave a complex spot pattern comprising proteins of a broad range of isoelectric points and molecular masses. The most abundant spots were subjected to mass spectrometric analysis. We could identify 31 spots representing 26 proteins, most of them involved in metabolic processes and response to stress. Seventeen spots were identified by de novo sequencing due to a lack of DNA and protein database sequences of A. ochraceus. The proteins identified in our study have been reported for the first time in A. ochraceus and this represents the first proteomic approach with identification of major proteins, when the fungus was grown under submerged culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bhadauria V, Zhao WS, Wang LX, Zhang Y et al (2007) Advances in fungal proteomics. Microbiol Res 162:193–200

    Article  CAS  PubMed  Google Scholar 

  • Bjellqvist B, Pasquali C, Ravier F, Sanchez JC et al (1993) A nonlinear wide-range immobilized pH gradient for two-dimensional electrophoresis and its definition in a relevant pH scale. Electrophoresis 14:1357–1365

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breakspear A, Momany M (2007) The first fifty microarray studies in filamentous fungi. Microbiology 153:7–15

    Article  CAS  PubMed  Google Scholar 

  • Bruneau JM, Magnin T, Tagat E, Legrand R et al (2001) Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis 22:2812–2823

    Article  CAS  PubMed  Google Scholar 

  • Carberry S, Neville CM, Kavanagh KA, Doyle S (2006) Analysis of major intracellular proteins of Aspergillus fumigatus by MALDI mass spectrometry: identification and characterisation of an elongation factor 1B protein with glutathione transferase activity. Biochem Biophys Res Commun 341:1096–1104

    Article  CAS  PubMed  Google Scholar 

  • Chaffin WL, Lopez-Ribot JL, Casanova M, Gozalbo D et al (1998) Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62:130–180

    CAS  PubMed  Google Scholar 

  • Delgado ML, O’Connor JE, Azorin I, Renau-Piqueras J et al (2001) The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2 and TDH3 genes are also cell wall proteins. Microbiology 147:411–417

    CAS  PubMed  Google Scholar 

  • Denikus N, Orfaniotou F, Wulf G, Lehmann PF et al (2005) Fungal antigens expressed during invasive aspergillosis. Infect Immun 73:4704–4713

    Article  CAS  PubMed  Google Scholar 

  • Gianazza E, Giacon P, Sahlin B, Righetti PG (1985) Non-linear pH courses with immobilized pH gradients. Electrophoresis 6:53–56

    Article  CAS  Google Scholar 

  • Grinyer J, McKay M, Herbert B, Nevalainen H (2004) Fungal proteomics: mapping the mitochondrial proteins of a Trichoderma harzianum strain applied for biological control. Curr Genet 45:170–175

    Article  CAS  PubMed  Google Scholar 

  • Grinyer J, Hunt S, McKay M, Herbert BR et al (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47:381–388

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Macedo ML, Ferraz A, Rodriguez J, Ottoboni LM et al (2002) Iron-regulated proteins in Phanerochaete chrysosporium and Lentinula edodes: differential analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis and two-dimensional polyacrylamide gel electrophoresis profiles. Electrophoresis 23:655–661

    Article  CAS  PubMed  Google Scholar 

  • Hofmann G, McIntyre M, Nielsen J (2003) Fungal genomics beyond Saccharomyces cerevisiae? Curr Opin Biotechnol 14:226–231

    Article  CAS  PubMed  Google Scholar 

  • Hooshdaran MZ, Barker KS, Hilliard GM, Kusch H et al (2004) Proteomic analysis of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 48:2733–2735

    Article  CAS  PubMed  Google Scholar 

  • Jacobs DI, van Rijssen MS, van der Heijden R, Verpoorte R (2001) Sequential solubilization of proteins precipitated with trichloroacetic acid in acetone from cultured Catharanthus roseus cells yields 52% more spots after two-dimensional electrophoresis. Proteomics 1:1345–1350

    Article  CAS  PubMed  Google Scholar 

  • Kniemeyer O, Lessing F, Scheibner O, Hertweck C et al (2006) Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus. Curr Genet 49:178–189

    Article  CAS  PubMed  Google Scholar 

  • Krogh P (1992) Role of ochratoxin in disease causation. Food Chem Toxicol 30:213–224

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Pan L, Lin Y (2009) Analysis of extracellular proteins of Aspergillus oryzae grown on soy sauce koji. Biosci Biotechnol Biochem 73:192–195

    Article  CAS  PubMed  Google Scholar 

  • Lim D, Hains P, Walsh B, Bergquist P et al (2001) Proteins associated with the cell envelope of Trichoderma reesei: a proteomic approach. Proteomics 1:899–909

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Zhang K, Hendrie C, Liang C et al (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2337–2342

    Article  CAS  PubMed  Google Scholar 

  • Meca G, Ritieni A (2009) Production and analysis of ochratoxin A produced by Aspergillus ochraceus ITEM 5137 in submerged culture. Food Chem 117:470–472

    Article  CAS  Google Scholar 

  • Medina ML, Haynes PA, Breci L, Francisco WA (2005) Analysis of secreted proteins from Aspergillus flavus. Proteomics 5:3153–3161

    Article  CAS  PubMed  Google Scholar 

  • Melin P, Schnurer J, Wagner EG (2002) Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol Genet Genomics 267:695–702

    Article  CAS  PubMed  Google Scholar 

  • Miller I, Friedlein A, Tsangaris G, Maris A et al (2004) The serum proteome of Equus caballus. Proteomics 4:3227–3234

    Article  CAS  PubMed  Google Scholar 

  • Miller I, Wait R, Sipos W, Gemeiner M (2009) A proteomic reference map for pig serum proteins as a prerequisite for diagnostic applications. Res Vet Sci 86:362–367

    Article  CAS  PubMed  Google Scholar 

  • Milles J, Krämer J, Prange A (2007) Development of a proteomic approach to monitor protein synthesis in mycotoxin producing moulds. Mycotox Res 23:161–165

    Article  CAS  Google Scholar 

  • Muhlencoert E, Mayer I, Zapf MW, Vogel RF et al (2004) Production of ochratoxin A by Aspergillus ochraceus. Eur J Plant Pathol 110:651–659

    Article  Google Scholar 

  • Munoz K, Vega M, Rios G, Munoz S et al (2006) Preliminary study of Ochratoxin A in human plasma in agricultural zones of Chile and its relation to food consumption. Food Chem Toxicol 44:1884–1889

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar MP, Marten MR (2002) Comparison of lysis methods and preparation protocols for one- and two-dimensional electrophoresis of Aspergillus oryzae intracellular proteins. Electrophoresis 23:2216–2222

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar MP, Shen J, Raman B, Marten MR (2003) Solubilization of trichloroacetic acid (TCA) precipitated microbial proteins via NaOH for two-dimensional electrophoresis. J Proteome Res 2:89–93

    Article  CAS  PubMed  Google Scholar 

  • Nevalainen KM, Te’o VS, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23:468–474

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Wariishi H (2005) Development of a sample preparation method for fungal proteomics. FEMS Microbiol Lett 247:17–22

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Yuda N, Nakamura T, Tanaka H et al (2005) Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin. Proteomics 5:3919–3931

    Article  CAS  PubMed  Google Scholar 

  • Stoev SD (1998) The role of ochratoxin A as a possible cause of Balkan endemic nephropathy and its risk evaluation. Vet Hum Toxicol 40:352–360

    CAS  PubMed  Google Scholar 

  • Strom K, Schnurer J, Melin P (2005) Co-cultivation of antifungal Lactobacillus plantarum MiLAB 393 and Aspergillus nidulans, evaluation of effects on fungal growth and protein expression. FEMS Microbiol Lett 246:119–124

    Article  PubMed  Google Scholar 

  • Tarze A, Deniaud A, Le Bras M, Maillier E et al (2006) GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene 26:2606–2620

    Article  PubMed  Google Scholar 

  • Vodisch M, Albrecht D, Lessing F, Schmidt AD et al (2009) Two-dimensional proteome reference maps for the human pathogenic filamentous fungus Aspergillus fumigatus. Proteomics 9:1407–1415

    Article  PubMed  Google Scholar 

  • Wang D, Kalb SR, Cotter RJ (2004) Improved procedures for N-terminal sulfonation of peptides for matrix-assisted laser desorption/ionization post-source decay peptide sequencing. Rapid Commun Mass Spectrom 18:96–102

    Article  CAS  PubMed  Google Scholar 

  • Yajima W, Kav NN (2006) The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6:5995–6007

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Rogowska-Wrzesinska A, Roepstorff P (2008) On-target sample preparation of 4-sulfophenyl isothiocyanate-derivatized peptides using AnchorChip Targets. J Mass Spectrom 43:346–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC) Islamabad, Pakistan and Austrian Exchange Service (ÖAD) Vienna, Austria for providing a scholarship to Mr. Muhammad Rizwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Razzazi-Fazeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizwan, M., Miller, I., Tasneem, F. et al. Proteome analysis of Aspergillus ochraceus . Mycotox Res 26, 171–180 (2010). https://doi.org/10.1007/s12550-010-0051-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-010-0051-x

Keywords

Navigation