Skip to main content
Log in

Characterization of Distribution of Microstructure and Micro-mechanical Properties of Nickel-Based Single Crystal Superalloy Within the Shot-Peened Layer

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Distributions of hardness, elastic modulus, yield strength, and residual stress within the shot-peened layer of nickel-based single crystal superalloy were measured by instrumented indentation with Berkovich indenter under a constant indentation displacement of 400 nm. Elastic modulus is little affected by shot peening, while yield strength calculated by Nobre’s method is significantly increased. The hardness and residual stress calculated by Vickers hardness testing are also proportional to the results by instrumented indentation. Indentation parameters such as hardness, indentation work, and contact area linearly depend on residual stress. Microstructures observed by SEM and EBSD show that the crystal orientation is severely distorted within 20 μm from the peened surface. The thickness of the plastic deformation layer measured by EBSD is 60 μm. XRD results show that the number of diffraction peaks increases after shot peening, indicating the transformation from single crystal to polycrystalline structure; residual stress, domain size, microstrain, and dislocation density of shot-peened layer are − 837.5 MPa, 12.88–37.68 nm, 4.39–6.17 × 10–3, and 4.84–8.15 × 1015 m−2, respectively. The values of residual stress calculated by different nanoindentation models are different, but they are proportional to one another with a similar variation within the shot-peened surface. David’s model is the most suitable one to assess residual stresses of single crystals by performing nanoindentation tests on the side surface that is perpendicular to the peened surface. The maximum compressive residual stress calculated by David's model is 1.26 GPa at the depth of 38 μm, and the total depth of compressive residual stress is about 130 μm.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of Data and Materials

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. A.A. Hopgood, J.W. Martin, The creep behaviour of a Nickel-based single-crystal superalloy. Mater. Sci. Eng. 82, 27–36 (1986)

    CAS  Google Scholar 

  2. Z. Shang, X. Wei, D. Song, J. Zou, S. Liang, G. Liu, L. Nie, X. Gong, Microstructure and mechanical properties of a new nickel-based single crystal superalloy. J. Mater. Res. Technol. 9, 11641–11649 (2020)

    CAS  Google Scholar 

  3. D.A. Lesyk, V.V. Dzhemelinskyi, S. Martinez, B.N. Mordyuk, A. Lamikiz, Surface shot peening post-processing of Inconel 718 alloy parts printed by laser powder bed fusion additive manufacturing. J. Mater. Eng. Perform. 30, 6982–6995 (2021)

    CAS  Google Scholar 

  4. D. Balaji, T. Jeyapoovan, Optimization of process parameters in water jet peening on AA6063 aluminium alloy by response surface methodology. Int. J. Mech. Prod. Eng. Res. Dev. 9, 1065–1076 (2019)

    Google Scholar 

  5. W. Thanakulwattana, W. Nakkiew, Residual stress analysis in deep rolling process on gas tungsten arc weld of stainless steel AISI 316L. Key Eng. Mater. 880, 23–28 (2021)

    Google Scholar 

  6. S.H. Lim, Z. Zhang, D.H.L. Seng, M. Lin, S.L. Teo, F. Wei, A.K.H. Cheong, S. Wang, J. Pan, In-situ warm shot peening on Ti–6Al–4V alloy: effects of temperature on fatigue life, residual stress, microstructure and mechanical properties. J. Alloys Compd. 882, 160701 (2021)

    Google Scholar 

  7. B.X. Feng, X.N. Mao, G.J. Yang, L.L. Yu, X.D. Wu, Residual stress field and thermal relaxation behavior of shot-peened TC4-DT titanium alloy. Mater. Sci. Eng. A 512, 105–108 (2009)

    Google Scholar 

  8. W. Jiang, W. Woo, B. Wang, S.T. Tu, A study of residual stress in the repair weld of stainless steel clad plate by neutron diffraction measurement and finite element method. Acta Metall. Sin. 48, 1525 (2012)

    CAS  Google Scholar 

  9. Z. Zhang, M. Lin, D.H.L. Seng, S.L. Teo, F. Wei, H.R. Tan, A.K.H. Cheong, S.H. Lim, S. Wang, J. Pan, Fatigue life enhancement in alpha/beta Ti–6Al–4V after shot peening: an EBSD and TEM crystallographic orientation mapping study of surface layer. Materialia 12, 100813 (2020)

    CAS  Google Scholar 

  10. U. Oliveira, V. Ocelík, J.T.M. Hosson, Residual stress analysis in Co-based laser clad layers by laboratory X-rays and synchrotron diffraction techniques. Surf. Coat. Tech. 201, 533–542 (2006)

    Google Scholar 

  11. X.P. Jiang, C.S. Man, M.J. Shepard, T. Zhai, Effects of shot-peening and re-shot-peening on four-point bend fatigue behavior of Ti–6Al–4V. Mater. Sci. Eng. A 468, 137–143 (2007)

    Google Scholar 

  12. P.J. Withers, Residual stress and its role in failure. Rep. Prog. Phys. 70, 2211 (2007)

    Google Scholar 

  13. M. Thomas, M. Jackson, The role of temperature and alloy chemistry on subsurface deformation mechanisms during shot peening of titanium alloys. Scr. Mater. 66, 1065–1068 (2012)

    CAS  Google Scholar 

  14. B.A. Galanov, Y.V. Milman, S.I. Chugunova, I.V. Goncharova, I.V. Voskoboinik, Application of the improved inclusion core model of the indentation process for the determination of mechanical properties of materials. Crystals 7, 87 (2017)

    Google Scholar 

  15. Y.V. Milman, B.M. Mordyuk, K.E. Grinkevych, S.I. Chugunova, I.V. Goncharova, A.I. Lukyanov, D.A. Lesyk, New opportunities to determine the rate of wear of materials at friction by the indentation data. Usp. Fiz. Met. 21, 554–579 (2020)

    Google Scholar 

  16. L. Chudinovskikh, R. Boehler, Yield strength and hardness of micron-sized powders measured in the diamond cell. High Press. Res. 41, 366–378 (2021)

    CAS  Google Scholar 

  17. S.Z. Diao, Q. Zhao, S.L. Wang, W.T. Han, Z.Q. Wang, P.P. Liu, Y.H. Chen, F.R. Wan, Q. Zhan, The microstructure evolution and irradiation hardening in 15Cr-ODS steel irradiated by helium ions. Mater. Charact. 184, 111699 (2022)

    CAS  Google Scholar 

  18. Y.X. Song, Z.X. Pan, Y.B. Li, W.Y. Jin, Z.L. Gao, Z.G. Wu, Y. Ma, Nanoindentation characterization on the temperature-dependent fracture mechanism of Chinese 316H austenitic stainless steel under creep-fatigue interaction. Mater. Charact. 186, 111806 (2022)

    CAS  Google Scholar 

  19. Y.V. Milman, A.A. Golubenko, S.N. Dub, Indentation size effect in nanohardness. Acta Mater. 59, 7480–7487 (2011)

    CAS  Google Scholar 

  20. C. Velmurugan, V. Senthilkumar, Effects of particle size and sintering temperature on superelasticity behavior of NiTi shape memory alloy using nanoindentation. Surf. Rev. Lett. 28, 2150024 (2021)

    CAS  Google Scholar 

  21. X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002)

    CAS  Google Scholar 

  22. H.T. Liu, M.H. Zhao, C.S. Lu, J.W. Zhang, Characterization on the yield stress and interfacial coefficient of friction of glasses from scratch tests. Ceram. Int. 46, 6060–6066 (2020)

    CAS  Google Scholar 

  23. Y.V. Milman, B.A. Galanov, S.I. Chugunova, Plasticity characteristic obtained through hardness measurement. Acta Metall. Mater. 41, 2523–2532 (1993)

    CAS  Google Scholar 

  24. Y.V. Milman, S.I. Chugunova, I.V. Goncharova, A.A. Golubenko, Plasticity of materials determined by the indentation method. Usp. Fiz. Met. 19, 271–308 (2018)

    Google Scholar 

  25. G.Z. Kang, Q. Gao, L.X. Cai, X.J. Yang, Y.F. Sun, Experimental study on uniaxial and multiaxial strain cyclic characteristics and ratcheting of 316L stainless steel. J. Mater. Sci. Technol. 17, 219–223 (2001)

    CAS  Google Scholar 

  26. T. Dowhan, A. Wymysjowski, P. Janus, M. Ekwinska, O. Wittier, Extraction of elastic-plastic material properties of thin films through nanoindentaion technique with support of numerical methods. Microelectron. Reliab. 51, 1046–1053 (2011)

    CAS  Google Scholar 

  27. C.K. Lam, A. Lau, L.M. Zhou, Nano-mechanical creep properties of nanoclay/epoxy composite by nanoindentation. Key Eng. Mater. 334–335, 669–672 (2007)

    Google Scholar 

  28. C.H. Gao, M. Liu, Power law creep of polycarbonate by Berkovich nanoindentation. Mater. Res. Express 4, 105302 (2017)

    Google Scholar 

  29. M. Liu, Q. Zheng, X. Wang, C.L. Xu, Characterization of distribution of residual stress in shot-peened layer of nickel-based single crystal superalloy DD6 by nanoindentation technique. Mech. Mater. 164, 104143 (2022)

    Google Scholar 

  30. W. Liu, Y.Z. Wu, T. Ye, B. Deng, X.J. Zheng, Determination of piezoelectric constants of ZnO thin film by combining finite element method and nanoindentation test. J. Mater. Sci. Eng. 39, 96–100 (2021)

    CAS  Google Scholar 

  31. W. Wang, L. Su, X.J. Zheng, Evaluation of the piezoelectric stress constants of BNKT film by combining nanoindentation test with finite element method. Nat. Sci. J. Xiangtan Univ. 38, 6 (2016)

    Google Scholar 

  32. W. Zhang, X.W. Wang, Z.T. Kang, T.Y. Zhang, Y. Jiang, X.C. Zhang, J.M. Gong, S.T. Tu, Insight into the creep-fatigue interaction and remaining creep damage mechanisms in different micro-regions of 9%Cr steel welded joints. Mater. Charact. 185, 111777 (2022)

    CAS  Google Scholar 

  33. J.D. Zhang, W.X. Han, Z.Y. Huang, J.H. Li, M.Y. Zhang, L. Zhang, Study on microstructure evolution and nanoindentation characteristics of 316 L austenitic stainless steel with inverse gradient grain sizes fabricated via torsion and electro-magnetic induction heating. Mater. Charact. 181, 111462 (2021)

    CAS  Google Scholar 

  34. H. Xu, D.T. Smith, G.E. Schumacher, J.B. Quinn, F.C. Eichmiller, J.M. Antonucci, Dental resin composites containing silica-fused whiskers–effects of whisker-to-silica ratio on fracture toughness and indentation properties. Biomaterials 23, 735–742 (2002)

    CAS  Google Scholar 

  35. X.S. Zou, M. Rachakonda, S.F. Chu, X.R. Zhao, J. Joardar, K.M. Reddy, Structure and mechanical properties of nanostructured Rhombohedral Cr5Al8. Mater. Charact. 172, 110862 (2021)

    CAS  Google Scholar 

  36. N.A. Stelmashenko, M.G. Walls, L.M. Brown, Y.V. Milman, Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall. Mater. 41, 2855–2865 (1993)

    CAS  Google Scholar 

  37. J. Gong, B. Deng, H. Qiu, D. Jiang, Self-calibration of area function for mechanical property determination with nanoindentation tests. J. Mater. Sci. 55, 16002–16017 (2020)

    CAS  Google Scholar 

  38. G.F. Zhao, M. Liu, F.Q. Yang, The effect of an electric current on the nanoindentation behavior of tin. Acta Mater. 60, 3773–3782 (2012)

    CAS  Google Scholar 

  39. Z. Peng, J. Gong, H. Miao, On the description of indentation size effect in hardness testing for ceramics: analysis of the nanoindentation data. J. Eur. Ceram. Soc. 24, 2193–2201 (2004)

    CAS  Google Scholar 

  40. J.H. Gong, B. Deng, D.Y. Jiang, A universal function for the description of nanoindentation unloading data: case study on soda-lime glass. J. Non-Cryst. Solids 544, 120067 (2020)

    CAS  Google Scholar 

  41. M.R. Vanlandingham, J.S. Villarrubia, W.F. Guthrie, G.F. Meyers, Nanoindentation of polymers: an overview. Macromol. Symp. 167, 15–44 (2001)

    CAS  Google Scholar 

  42. X.J. Zheng, Y.C. Zhou, Investigation of an anisotropic plate model to evaluate the interface adhesion of thin film with cross-sectional nanoindentation method. Compos. Sci. Technol. 65, 1382–1390 (2005)

    CAS  Google Scholar 

  43. M. Liu, F.Q. Yang, Indentation-induced interface decohesion between a piezoelectric film and an elastic substrate. J. Comput. Theor. Nanosci. 11, 1863–1873 (2014)

    CAS  Google Scholar 

  44. Y.H. Liao, H.P. Hu, X.J. Zheng, Identification of piezoelectric properties of BNT thin films by nanoindentation method. Nat. Sci. J. Xiangtan Univ. 37, 9–14 (2015)

    Google Scholar 

  45. Y.L. Li, Y. Li, W.Q. Wang, M. Lei, X.W. Li, Synthesis Fe–Ni protective coating on 45 steel by laser remelting nickel pre-coating dopped with Fe-based amorphous powders. Mater. Charact. 176, 111129 (2021)

    CAS  Google Scholar 

  46. M. Liu, F.Q. Yang, Three-dimensional finite element simulation of the Berkovich indentation of a transversely isotropic piezoelectric material: effect of material orientation. Model. Simul. Mater. Sci. Eng. 21, 045014 (2013)

    Google Scholar 

  47. M. Liu, F.Q. Yang, Orientation effect on the Boussinesq indentation of a transversely isotropic piezoelectric material. Int. J. Solids Struct. 50, 2542–2547 (2013)

    Google Scholar 

  48. J.G. Swadener, B. Taljat, G.M. Pharr, Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res. 16, 2091–2102 (2001)

    CAS  Google Scholar 

  49. G.J. Peng, Z.K. Lu, Y. Ma, Y.H. Feng, Y. Huan, T.H. Zhang, Spherical indentation method for estimating equibiaxial residual stress and elastic-plastic properties of metals simultaneously. J. Mater. Res. 33, 884–897 (2018)

    CAS  Google Scholar 

  50. Y.H. Lee, D. Kwon, Measurement of residual-stress effect by nanoindentation on elastically strained (1 0 0) W. Scr. Mater. 49, 459–465 (2003)

    CAS  Google Scholar 

  51. Y.H. Lee, D. Kwon, Estimation of biaxial surface stress by instrumented indentation with sharp indenters. Acta Mater. 614, 264–272 (2004)

    Google Scholar 

  52. L. Xu, S. Wang, Y. Feng, Y. Yao, L.M. Keer, Annealing effect on residual stress of Sn–3.0Ag–0.5Cu solder measured by nanoindentation and constitutive experiments. Mater. Sci. Eng. A 696, 90–95 (2017)

    Google Scholar 

  53. M. Dong, X. Cui, H. Wang, L. Zhu, B. Xu, Effect of different substrate temperatures on microstru- cture and residual stress of Ti films. Rare Metal Materials & Engineering 45, 843–848 (2016)

    CAS  Google Scholar 

  54. Z.H. Xu, X.D. Li, Influence of equi-biaxial residual stress on unloading behaviour of nanoindentation. Acta Mater. 53, 1913–1919 (2005)

    CAS  Google Scholar 

  55. Z.H. Xu, X. Li, Estimation of residual stresses from elastic recovery of nanoindentation. Philos. Mag. 86, 2835–2846 (2006)

    CAS  Google Scholar 

  56. S. Suresh, A.E. Giannakopoulos, A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46, 5755–5767 (1998)

    CAS  Google Scholar 

  57. S. Ghanbari, D.F. Bahr, An energy-based nanoindentation method to assess localized residual stresses and mechanical properties on shot-peened materials. J. Mater. Res. 34, 1121–1129 (2019)

    CAS  Google Scholar 

  58. Z.K. Lu, Y.H. Feng, G.G. Peng, R. Yang, Y. Huan, Estimation of surface equi-biaxial residual stress by using instrumented sharp indentation. Mater. Sci. Eng. A 614, 264–272 (2014)

    CAS  Google Scholar 

  59. G. Peng, Z. Lu, Y. Ma, Y. Feng, Y. Huan, T. Zhang, Spherical indentation method for estimating equibiaxial residual stress and elastic-plastic properties of metals simultaneously. J. Mater. Res. 33, 884–897 (2018)

    CAS  Google Scholar 

  60. D. Arjun, K.M. Anoop, Evaluation of residual stress in microplasma sprayed hydroxyapatite coating by nanoindentation. Ceram. Int. 40, 1263–1272 (2014)

    Google Scholar 

  61. L. Du, K. Zhai, S. Wang, X. Zhang, J. Liu, Evaluation of residual stress of metal micro structure electroformed with megasonic agitation. J. Manuf. Process. 59, 629–635 (2020)

    Google Scholar 

  62. G. Peng, F. Xu, J. Chen, H. Wang, T. Zhang, Evaluation of non-equibiaxial residual stresses in metallic materials via instrumented spherical indentation. Met. Open Access Metall. J. 10, 440 (2020)

    Google Scholar 

  63. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    CAS  Google Scholar 

  64. G.K. Williamson, R.E. Smallman III., Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. Philos. Mag. 1, 34–46 (1956)

    CAS  Google Scholar 

  65. M.G. Wang, S.G. Tian, X.F. Yu, B.J. Qian, Influences of element Re and temperatures on the lattice parameter and misfit of single-crystal nickel-based superalloys. Rare Met. Mater. Eng. 39, 268–272 (2010)

    Google Scholar 

  66. D.J. Chadwick, S.B.D.F. Ghanbari, M. Sangid, Crack incubation in shot peened AA7050 and mechanism for fatigue enhancement. Fatigue Fract. Eng. Mater. Struct. 41, 71–83 (2018)

    Google Scholar 

  67. P.T. Zhao, H.C. Yu, Y.H. He, Current situation of research on test methods for elastic modulus and Poisson’s ratio of single crystal superalloys. J. Aeronaut. Mater. 39, 25–34 (2019)

    Google Scholar 

  68. A. Yonezu, B. Xu, X. Chen, An experimental methodology for characterizing fracture of hard thin films under cyclic contact loading. Thin Solid Films 518, 2082–2089 (2010)

    CAS  Google Scholar 

  69. C.H. Gao, M. Liu, Characterization of spherical indenter with fused silica under small deformation by Hertzian relation and Oliver and Pharr’s method. Vacuum 153, 82–90 (2018)

    CAS  Google Scholar 

  70. C.H. Gao, M. Liu, Instrumented indentation of fused silica by Berkovich indenter. J. Non-Cryst. Solids 475, 151–160 (2017)

    CAS  Google Scholar 

  71. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    CAS  Google Scholar 

  72. M. Liu, L.G. Yao, C.H. Gao, Berkovich nanoindentation of borosilicate K9 glass. Opt. Eng. 57, 034104 (2018)

    Google Scholar 

  73. D.J. Ma, C.W. Ong, Further analysis of energy-based indentation relationship among Young’s modulus, nominal hardness, and indentation work. J. Mater. Res. 25, 1131–1136 (2010)

    CAS  Google Scholar 

  74. S.M. Cheng, Principle and application of different X-ray residual stress measurement methods. Phys. Test. Chem. Anal. 57, 13–19 (2021)

    Google Scholar 

  75. R.S. Lima, S.E. Kruger, G. Lamouche, B.R. Marple, Elastic modulus measurements via laser-ultrasonic and Knoop indentation techniques in thermally sprayed coatings. J. Therm. Spray Technol. 14, 52–60 (2005)

    CAS  Google Scholar 

  76. J.F. Li, C.X. Ding, Determining microhardness and elastic modulus of plasma-sprayed Cr3C2–NiCr coatings using Knoop indentation testing. Surf. Coat. Tech. 135, 229–237 (2001)

    CAS  Google Scholar 

  77. M. Liu, Q. Zheng, C.H. Gao, Characterization of mechanical properties of bulk metallic glasses based on Knoop hardness. Chin. J. Solid Mech. 42, 17 (2021)

    Google Scholar 

  78. A. Ansaldi, V. Fierro, R. Topolevsky, E. Ayllón, Measurement of elastic modulus using Knoop microindentation. InterCeram Int. Ceram. Rev. 47, 236–239 (1998)

    CAS  Google Scholar 

  79. J.L. Ladison, J.J. Price, J.D. Helfinstine, W.R. Rosch, Hardness, elastic modulus, and fracture toughness bulk properties in corning calcium fluoride. Int. Soc. Opt. Photonics 5754, 1329–1338 (2005)

    CAS  Google Scholar 

  80. J. Zhou, Z. Sun, P. Kanoute, D. Retraint, Reconstruction of residual stress and work hardening and their effects on the mechanical behaviour of a shot peened structure. Mech. Mater. 127, 100–111 (2018)

    Google Scholar 

  81. J.P. Nobre, A.M. Dias, M. Kornmeier, An empirical methodlogy to estimate a local yield stress in work-hardened surface layers. Exp. Mech. 44, 76–84 (2004)

    CAS  Google Scholar 

  82. J.P. Nobre, A.C. Batista, L. Coelho, A.M. Dias, Two experimental methods to determining stress–strain behavior of work-hardened surface layers of metallic components. J. Mater. Process. Technol. 2010, 2285–2291 (2010)

    Google Scholar 

  83. M.D. Kang, J.W. Yu, J. Wang, B.D. Sun, Influence of drawing velocity on the inner quality of single-crystal superalloy. J. Mater. Eng. Perform. 29, 2816–2826 (2020)

    CAS  Google Scholar 

  84. Z.S. Ma, Y.C. Zhou, S.G. Long, C.S. Lu, An inverse approach for extracting elastic–plastic properties of thin films from small scale sharp indentation. J. Mater. Sci. Technol. 28, 626–635 (2012)

    Google Scholar 

  85. X.L. Gao, X.N. Jing, G. Subhash, Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. Int. J. Solids Struct. 43, 2193–2208 (2006)

    Google Scholar 

  86. L. Xiao, D.Y. Ye, C.Y. Chen, A further study on representative models for calculating the residual stress based on the instrumented indentation technique. Comput. Mater. Sci. 82, 476–482 (2014)

    Google Scholar 

  87. Q. Wang, K. Ozaki, H. Ishikawa, S. Nakanoc, H. Ogisoc, Indentation method to measure the residual stress induced by ion implantation. Nucl. Instrum. Methods Phys. Res. 242, 88–92 (2006)

    CAS  Google Scholar 

  88. G.M. Pharr, A. Bolshakov, Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660–2671 (2002)

    CAS  Google Scholar 

  89. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    CAS  Google Scholar 

  90. R.N. Wang, Q.Y. Xu, X.F. Gong, X.L. Su, B.C. Liu, Experimental and numerical studies on recrystallization behavior of single-crystal Ni-base superalloy. Materials 11, 1242 (2018)

    Google Scholar 

  91. S. Ghosh, R.V. Prakash, Study of damage and fracture toughness due to influence of creep and fatigue of commercially pure copper by monotonic and cyclic indentation. Metall. Mater. Trans. A 44, 224–234 (2012)

    Google Scholar 

  92. G. Janez, The superalloys fundamentals and applications. Int. J. Microstruct. Mater. Prop. 7, 464–465 (2012)

    Google Scholar 

  93. J.S. Sluytman, T.M. Pollock, Optimal precipitate shapes in nickel-base γ´ − γ´ alloys. Acta Mater. 60, 1771–1783 (2012)

    Google Scholar 

  94. T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction. Acta Mater. 52, 3737–3744 (2004)

    CAS  Google Scholar 

  95. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)

    CAS  Google Scholar 

  96. Z.H. Tan, X.G. Wang, Y.L. Du, T.F. Duan, Y.H. Yang, J.L. Liu, J.D. Liu, L. Yang, J.G. Li, Y.Z. Zhou, Temperature dependence on tensile deformation mechanisms in a novel nickel-based single crystal superalloy. Mater. Sci. Eng. 776, 138997 (2020)

    CAS  Google Scholar 

  97. X.G. Wang, J.L. Liu, T. Jin, X.F. Sun, Tensile behaviors and deformation mechanisms of a nickel-base single crystal superalloy at different temperatures. Mater. Sci. Eng. A 598, 154–161 (2014)

    CAS  Google Scholar 

  98. M. Kamaya, Assessment of local deformation using EBSD: quantification of accuracy of measurement and definition of local gradient. Ultramicroscopy 111, 1189–1199 (2011)

    CAS  Google Scholar 

  99. O. Unal, E. Maleki, I. Karademir, F. Husem, Y. Efe, T. Das, Effects of conventional shot peening, severe shot peening, re-shot peening and precised grinding operations on fatigue performance of AISI 1050 railway axle steel. Int. J. Fatigue 155, 106613 (2022)

    CAS  Google Scholar 

  100. H. Liu, X. Wei, S. Xing, L. Wang, W. Zhu, C. Jiang, V. Ji, K. Zhan, Effect of stress shot peening on the residual stress field and microstructure of nanostructured Mg–8Gd–3Y alloy. J. Mater. Res. Technol. 10, 74–83 (2021)

    CAS  Google Scholar 

  101. Z.P. Zhou, Q. Lei, L.F. Zhang, Z.S. Cui, Y.J. Shang, H. Qi, Y.P. Li, L. Jiang, V.K. Nadimpalli, L. Huang, Microstructural evolution of nickel-based single crystal superalloy fabricated by directed energy deposition during heat treatment. J. Alloys Compd. 904, 163943 (2022)

    CAS  Google Scholar 

  102. Y. Harada, Y. Saeki, K. Takahashi, Effect of different shot peening treatments on fatigue life in Ti alloy. Mater. Sci. Forum 941, 908–913 (2018)

    Google Scholar 

  103. Y. Wen, P. Liu, L.C. Xie, Z. Wang, L.Q. Wang, W.J. Lu, C.H. Jiang, V. Ji, Evaluation of mechanical behavior and surface morphology of shot-peened Ti–6Al–4V alloy. J. Mater. Eng. Perform. 29, 182–190 (2020)

    CAS  Google Scholar 

  104. W. Song, X.G. Wang, J.G. Li, J. Meng, X.F. Sun, Effect of Ru on tensile behavior and deformation mechanism of a nickel-based single crystal superalloy. Mater. Sci. Eng. A 802, 140430 (2020)

    Google Scholar 

  105. W.R. Johnson, C.R. Barrett, W.D. Nix, The high-temperature creep behavior of nickel-rich Ni-W solid solutions. Metall. Mater. Trans. B 3, 963–969 (1972)

    CAS  Google Scholar 

  106. W.C. Yang, C. Liu, P.F. Qu, K.L. Cao, J.R. Qin, H.J. Su, J. Zhang, L. Liu, Strengthening enhanced by Ru partitioned to γ’ phases in advanced nickel-based single crystal superalloys. Mater. Charact. 186, 111809 (2022)

    CAS  Google Scholar 

  107. J.C. Villegas, K. Dai, L.L. Shaw, P.K. Liaw, Nanocrystallization of a nickel alloy subjected to surface severe plastic deformation. Mater. Sci. Eng. A 410, 257–260 (2005)

    Google Scholar 

  108. Y.H. Chen, C.H. Jiang, Z. Wang, K. Zhan, Influence of shot peening on surface-layer characteristics of a monocrystalline nickel-based superalloy. Powder Diffr. 25, 355–358 (2010)

    CAS  Google Scholar 

  109. Y. Zhou, A. Fillon, D. Laillé, T. Gloriant, Probing grain size effect in the superelastic Ti–20Zr–3Mo–3Sn alloy using spherical nanoindentation. Mater. Charact. 184, 111691 (2022)

    CAS  Google Scholar 

  110. D. Wu, L. Tian, C.L. Ma, Y. Shi, Tensile fracture behavior of Ni-based single crystal superalloy. Mater. Rev. 30, 76–80 (2016)

    CAS  Google Scholar 

  111. H.C. Yu, Y. Li, C. Li, J.R. Li, X.R. Wu, Tensile behavior of a singlecrystal Ni-base superalloy at different temperatures. J. Aerosp. Power 20, 958–963 (2005)

    Google Scholar 

  112. J.J. Vlassak, W.D. Nix, Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A 67, 1045–1056 (1993)

    Google Scholar 

  113. J.J. Vlassak, W.D. Nix, Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223–1245 (1994)

    Google Scholar 

  114. W. Wang, K. Lu, Nanoindentation study on elastic and plastic anisotropies of Cu single crystals. Philos. Mag. 86, 5309–5320 (2006)

    CAS  Google Scholar 

  115. M. Liu, K. Zhou, C.T. Peng, A.K. Tieu, Investigation of the anisotropic mechanical behaviors of copper single crystals through nanoindentation modelling. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47, 2717–2725 (2016)

    CAS  Google Scholar 

  116. W.Z. Yan, Y.L. Li, Z.X. Wen, S.H. Zou, Z.H. Duan, Effect of crystallographic orientation on nano-indentation behaviors of nickel based single crystal super alloys. Rare Met. Mater. Eng. 49, 1854–1859 (2020)

    CAS  Google Scholar 

  117. M. Nasim, Y. Li, C. Wen, Individual layer thickness-dependent microstructures and mechanical properties of fcc/fcc Ni/Al nanolaminates and their strengthening mechanisms. Materialia 6, 100347–100347 (2019)

    CAS  Google Scholar 

  118. M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater Sci. 51, 427–556 (2006)

    CAS  Google Scholar 

  119. T. Ungár, Dislocation densities, arrangements and character from X-ray diffraction experiments. Mater. Sci. Eng. A 309, 14–22 (2015)

    Google Scholar 

  120. R.S. Liu, J.Y. Li, On the structural defects and microscopic mechanism of the high strength of amorphous alloys. Mater. Sci. Eng. A 114, 127–132 (1989)

    Google Scholar 

  121. C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin Solid Films 418, 73–78 (2002)

    CAS  Google Scholar 

  122. L.H. Wu, Investigation on Shot Peening and XRD Characterization of Nickel Based Alloy Inconel 625 (Shanghai Jiao Tong University, Shanghai, 2019)

    Google Scholar 

  123. D.J. Buchanan, R. John, R.A. Brockman, A coupled creep plasticity model for residual stress relaxation of a shot-peened nickel-based superalloy. JOM 6, 75–79 (2010)

    Google Scholar 

  124. B.J. Foss, S. Gray, M.C. Hardy, S. Stekovic, D.S. Mcphail, B.A. Shollock, Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000. Acta Mater. 61, 2548–2559 (2013)

    CAS  Google Scholar 

  125. M. Haghshenas, M.A. Gharghouri, V. Bhakhri, R.J. Klassen, A.P. Gerlich, Assessing residual stresses in friction stir welding: neutron diffraction and nanoindentation methods. Int. J. Adv. Manuf. Technol. 93, 3733–3747 (2017)

    Google Scholar 

  126. A. Morancais, M. Fevre, M. Francois, P. Kanoute, S. Kruch, A. Longuet, Impact of shot-peening on a single crystal nickel-based superalloy. Adv. Mater. Res. 996, 70–75 (2014)

    Google Scholar 

  127. A. Morancais, M. Fèvre, M. Francois, N. Guel, S. Kruch, P. Kanouté, A. Longuet, Residual stress determination in a shot-peened nickel-based single-crystal superalloy using X-ray diffraction. J. Appl. Crystallogr. 48, 1761–1776 (2015)

    CAS  Google Scholar 

  128. Y.G. Li, P. Kanoute, M. Franois, Characterization of residual stresses and accumulated plastic strain induced by shot peening through simulation of instrumented indentation. Adv. Mater. Res. 996, 367–372 (2014)

    Google Scholar 

  129. M.J. Uddin, C.E. Ramirez, R. Mirshams, H. Siller, Nanoindentation and electron backscatter diffraction mapping in laser powder bed fusion of stainless steel 316L. Mater. Charact. 174, 111047 (2021)

    CAS  Google Scholar 

  130. S. Carlsson, P.L. Larsson, On the determination of residual stress and strain fields by sharp indentation testing. Part I: theoretical and numerical analysis. Acta Mater. 49, 2179–2191 (2001)

    CAS  Google Scholar 

  131. A.E. Giannakopoulos, The influence of initial elastic surface stresses on instrumented sharp indentation. J. Appl. Mech. 70, 638–643 (2003)

    Google Scholar 

  132. A. Bolshakov, W.C. Oliver, G.M. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: part II. Finite element simulations. J. Mater. Res. 11, 760–768 (1996)

    CAS  Google Scholar 

  133. C.E.K. Mady, S.A. Rodriguez, A.G. Gomez, R.M. Souza, Numerical analysis of different methods to calculate residual stresses in thin films based on instrumented indentation data. J. Mater. Res. 27, 1732–1741 (2012)

    CAS  Google Scholar 

  134. Z.S. Ma, Y.C. Zhou, S.G. Long, C. Lu, Residual stress effect on hardness and yield strength of Ni thin film. Surf. Coat. Tech. 207, 305–309 (2012)

    CAS  Google Scholar 

  135. T.Y. Tsui, W.C. Oliver, G.M. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: part I. Experimental studies in an aluminum alloy. J. Mater. Res. 11, 752–759 (1996)

    CAS  Google Scholar 

  136. J. Wu, H. Liu, P. Wei, C. Zhu, Q. Lin, Effect of shot peening coverage on hardness, residual stress and surface morphology of carburized rollers. Surf. Coat. Tech. 384, 125273 (2020)

    Google Scholar 

  137. L. Lizeng, L. Shiguo, Ma. Zengsheng, L. Xu, Key, numerical study on the effects of equi-biaxial residual stress on mechanical properties of nickel film by means of nanoindentation. J. Mater. Sci. Technol. 26, 1001–1005 (2010)

    Google Scholar 

  138. W.R. Lafontaine, C.A. Paszkiet, M.A. Korhonen, C.Y. Li, Residual stress measurements of thin aluminum metallizations by continuous indentation and X-ray stress measurement techniques. J. Mater. Res. 6, 2084–2090 (1991)

    CAS  Google Scholar 

  139. O. Takakuwa, Y. Kawaragi, H. Soyama, Estimation of the yield stress of stainless steel from the Vickers hardness taking account of the residual stress. J. Surf. Eng. Mater. Adv. Technol. 3, 262–268 (2013)

    Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant No. 51705082), Fuzhou University Qishan Scholar Program (Grant No. 0020-650289), Fujian Provincial Minjiang Scholar Program (Grant No. 0020-510759). This work is also supported by AECC (Aero Engine Corporation of China) Beijing Institute of Aeronautical Materials (Contract No. 2021-05-2167-WX).

Author Statement

We confirm that the paper is not concurrently submitted for publication elsewhere. The paper, in its entirety, in part, or in a modified version, has not been published elsewhere. The paper has not previously been submitted for possible publication elsewhere.

Author information

Authors and Affiliations

Authors

Contributions

ML: Conceptualization, Resources, Supervision, Writing—review and editing, Methodology, Nanoindentation tests, Validation. QZ: X-Ray and EBSD, and Microhardness experiments, Writing—original draft, Investigation, Figure Drawing, Data analysis. XW: Funding acquisition, Project administration, Discussion. CX: Shot peening treatment.

Corresponding authors

Correspondence to Ming Liu or Xin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicts of interest associated with this work, and declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zheng, Q., Wang, X. et al. Characterization of Distribution of Microstructure and Micro-mechanical Properties of Nickel-Based Single Crystal Superalloy Within the Shot-Peened Layer. Met. Mater. Int. 29, 2257–2286 (2023). https://doi.org/10.1007/s12540-023-01388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01388-9

Keywords

Navigation