Skip to main content
Log in

Characterization and Properties of Aluminium Reinforced Milled Carbon Fibres Composites Synthesized by Uniball Milling and Uniaxial Hot Pressing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Al-matrix composites reinforced with variant quantity of milled carbon fibers (MCFs) were manufactured via uniball magneto milling and uniaxial hot pressing (UHP). Cylindrical compacts of these composites were produced at approximately 600 °C for 15 min and 70 MPa uniaxial pressure in an argon atmosphere. The microstructure of powders and consolidated composite samples were studied by X-ray diffractometry and field emission scanning electron microscope with energy dispersive spectroscopy. The physical and mechanical properties of the bulk samples were estimated by Archimedes density, Vickers microhardness, modulus of elasticity, maximum compressive strength, yield strength, nanoindentation, and specific wear rate. Results show that Al + 20 vol% of MCFs has a higher compressive strength of (710 ± 32) MPa and modulus of elasticity of (15 ± 2) GPa compared to other composites and unreinforced Al sample. There are several factors that could be participate in improving the composite properties. These reasons included enhanced interface between Al matrix and MFCs, free of porosity, refined microstructure, and improved wetting between MFCs and Al matrix. Also, the specific wear rate of the composite was decreased when the MCFs volume fraction increases from 5 to 20%. This might propose that MFCs reduced the wear of the composites by acting as a self-lubrication material and might be suggested when using these types of composites in components sliding against hard surface. The notable composite properties were found at processing parameters of 50 h milling time and UHP at 600 °C for 15 min under 70 MPa applied pressure.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. J.J. Yao, D. Chu, Y.Q. Han, L.H. Ben, C.J. Wu, Continuous carbon fiber reinforced aluminum matrix composites—a review. Adv. Mater. Res. 850–851, 173–176 (2013). https://doi.org/10.4028/www.scientific.net/AMR.850-851.173

    Article  CAS  Google Scholar 

  2. K.L. Juhasz, P. Baumli, G. Kaptay, Fabrication of carbon fibre reinforced, aluminium matrix composite by potassium iodide (KI)–potassium hexafluoro-titanate (K2TiF6) flux. Materwiss. Werksttech. 43, 310–314 (2012). https://doi.org/10.1002/mawe.201200946

    Article  CAS  Google Scholar 

  3. B. Terry, G. Jones, Metal matrix Composites: Current Developments and Future Trends in Industrial Research and Applications (Elsevier Advanced Technology, Oxford, 1990)

    Google Scholar 

  4. M.K. Surappa, Aluminium matrix composites: challenges and opportunities. Sadhana 28, 319–334 (2003). https://doi.org/10.1007/BF02717141

    Article  CAS  Google Scholar 

  5. H. Naji, S.M. Zebarjad, S.A. Sajjadi, The effects of volume percent and aspect ratio of carbon fiber on fracture toughness of reinforced aluminum matrix composites. Mater. Sci. Eng. A 486, 413–420 (2008). https://doi.org/10.1016/j.msea.2007.09.030

    Article  CAS  Google Scholar 

  6. Y. Tang, H. Liu, H. Zhao, L. Liu, Y. Wu, Friction and wear properties of copper matrix composites reinforced with short carbon fibers. Mater. Des. 29, 257–261 (2008). https://doi.org/10.1016/j.matdes.2006.11.011

    Article  CAS  Google Scholar 

  7. M. Sánchez, J. Rams, A. Ureña, Fabrication of aluminium composites reinforced with carbon fibres by a centrifugal infiltration process. Compos. Part A Appl. Sci. Manuf. 41, 1605–1611 (2010). https://doi.org/10.1016/j.compositesa.2010.07.014

    Article  CAS  Google Scholar 

  8. E.M. Ruiz-Navas, J.B. Fogagnolo, F. Velasco, J.M. Ruiz-Prieto, L. Froyen, One step production of aluminium matrix composite powders by mechanical alloying. Compos. Part A Appl. Sci. Manuf. 37, 2114–2120 (2006). https://doi.org/10.1016/j.compositesa.2005.11.016

    Article  CAS  Google Scholar 

  9. T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites, 2nd edn. (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  10. T.W. Clyne, An introductory overview of MMC systems, types, and developments, in Comprehensive Composite Materials, UK (2000)

  11. L. Liu, W. Li, Y. Tang, B. Shen, W. Hu, Friction and wear properties of short carbon fiber reinforced aluminum matrix composites. Wear 266, 733–738 (2009). https://doi.org/10.1016/j.wear.2008.08.009

    Article  CAS  Google Scholar 

  12. P. Baumli, J. Sychev, I. Budai, J.T. Szabo, G. Kaptay, Fabrication of carbon fiber reinforced aluminum matrix composites via a titanium-ion containing flux. Compos. Part A Appl. Sci. Manuf. 44, 47–50 (2013). https://doi.org/10.1016/j.compositesa.2012.08.021

    Article  CAS  Google Scholar 

  13. A. Ureña, J. Rams, M.D. Escalera, M. Sánchez, Characterization of interfacial mechanical properties in carbon fiber/aluminium matrix composites by the nanoindentation technique. Compos. Sci. Technol. 65, 2025–2038 (2005). https://doi.org/10.1016/j.compscitech.2005.04.013

    Article  CAS  Google Scholar 

  14. A. Ureña, J. Rams, M. Campo, M. Sánchez, Effect of reinforcement coatings on the dry sliding wear behaviour of aluminium/SiC particles/carbon fibres hybrid composites. Wear 266, 1128–1136 (2009). https://doi.org/10.1016/j.wear.2009.03.016

    Article  CAS  Google Scholar 

  15. Z. Sadeghian, B. Lotfi, M.H. Enayati, P. Beiss, Microstructural and mechanical evaluation of Al-TiB2 nanostructured composite fabricated by mechanical alloying. J. Alloys Compd. 509, 7758–7763 (2011). https://doi.org/10.1016/j.jallcom.2011.04.145

    Article  CAS  Google Scholar 

  16. D. Singla, K. Amulya, Q. Murtaza, CNT reinforced aluminium matrix composite—a review, in Materials Today: Proceedings (Elsevier, Amsterdam, 2015) pp. 2886–2895. https://doi.org/10.1016/j.matpr.2015.07.248

  17. R. Shadakshari, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites—a review. Int. J. Innov. Res. Sci. Eng. Technol. 1, 206–2013 (2012). https://doi.org/10.1179/095066009X12572530170543

    Article  CAS  Google Scholar 

  18. S.R. Bakshi, V. Singh, K. Balani, D.G. McCartney, S. Seal, A. Agarwal, Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf. Coat. Technol. 202, 5162–5169 (2008). https://doi.org/10.1016/j.surfcoat.2008.05.042

    Article  CAS  Google Scholar 

  19. E. Akbarzadeh, J.A. Picas, M.T. Baile, Orthogonal experimental design applied for wear characterization of aluminum/C sf metal composite fabricated by the thixomixing method. Int. J. Mater. Form 9, 601–612 (2016). https://doi.org/10.1007/s12289-015-1246-7

    Article  Google Scholar 

  20. H.M. Cheng, Z.H. Lin, B.L. Zhou, Z.G. Zhen, K. Kobayashi, Y. Uchiyama, Preparation of carbon fibre reinforced aluminium via ultrasonic liquid infiltration technique. Mater. Sci. Technol. 9, 609–614 (1993). https://doi.org/10.1179/mst.1993.9.7.609

    Article  CAS  Google Scholar 

  21. M.F. Amateau, R.H. Flowers, Z. Eliezer, Tribological behavior of metal matrix composites. Wear 54, 175–185 (1979). https://doi.org/10.1016/0043-1648(79)90055-3

    Article  CAS  Google Scholar 

  22. J.M. McKittrick, N.S. Sridharan, M.F. Amateau, Wear behavior of graphite–fiber–reinforced glass. Wear 96, 285–299 (1984). https://doi.org/10.1016/0043-1648(84)90042-5

    Article  Google Scholar 

  23. Z. Eliezer, V.D. Khanna, M.F. Amateau, Wear mechanism in composites: a qualitative model. Wear 51, 169–179 (1978). https://doi.org/10.1016/0043-1648(78)90064-9

    Article  CAS  Google Scholar 

  24. B.T. AL-Mosawi, D. Wexler, A. Calka, Characterization and mechanical properties of α-Al2O3 particle reinforced aluminium matrix composites, synthesized via uniball magneto-milling and uniaxial hot pressing. Adv. Powder Technol. 28, 1054–1064 (2016). https://doi.org/10.1016/j.apt.2017.01.011

    Article  CAS  Google Scholar 

  25. A. Calka, A. Radlinski, Universal high performance ball-milling device and its application for mechanical alloying. Mater. Sci. Eng. A 134, 1350–1353 (1991). https://doi.org/10.1016/0921-5093(91)90989-Z

    Article  Google Scholar 

  26. B.T. Al-Mosawi, D. Wexler, A. Calka, Development of aluminium reinforced milled carbon fibre composites via magnetically controlled ball milling: manufacturing and characterisation. Nano Hybrids Compos. 16, 13–19 (2017). https://doi.org/10.4028/www.scientific.net/NHC.16.13

    Article  Google Scholar 

  27. A. Calka, B. Ninham, Ball Milling Apparatus, United States Patent No. 5,383,615 (1995)

  28. Y. Nishida, G. Ohira, Modelling of infiltration of molten metal in fibrous preform by centrifugal force. Acta Mater. 47, 841–852 (1999). https://doi.org/10.1016/S1359-6454(98)00393-0

    Article  CAS  Google Scholar 

  29. H. Kuhn, D. Medlin, ASM Handbook. Volume 8: Mechanical Testing and Evaluation (2000)

  30. P. Katiyar, Processing, Microstructural and Mechanical Characterization of Mechanically Alloyed Al–Al2O3 Nanocomposites (University of Central Florida, Orlando, 2004)

    Google Scholar 

  31. A. International, W. Conshohocken, PA, ASTM G132-96(2013) Standard Test Method for Pin Abrasion Testing, PA (2013)

  32. S.W. Wai, Rapid Assessment of Paint Coatings by Micro and Nano Indentation Methods (University of Wollongong, 2013). http://ro.uow.edu.au/theses/3873

  33. W.C. Oliver, G.M. Phar, W.C. Oliver, G.M. Pharr, W.C. Oliver, G.M. Phar, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 1–18 (2003)

    Google Scholar 

  34. W.C.C. Oliver, G.M.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  35. M. Khitouni, M. Mhadhbi, L. Escoda, J.J. Suñol, M. Dammak, Characterization of mechanically alloyed nanocrystalline Fe(Al): crystallite size and dislocation density. J. Nanomater. (2010). https://doi.org/10.1155/2010/712407

    Article  Google Scholar 

  36. S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, P.V. Satyanarayana, X-ray peak broadening analysis of AA 6061100-x-x wt% Al2O3 nanocomposite prepared by mechanical alloying. Mater. Charact. 62, 661–672 (2011). https://doi.org/10.1016/j.matchar.2011.04.017

    Article  CAS  Google Scholar 

  37. V. Biju, N. Sugathan, V. Vrinda, S.L. Salini, Estimation of lattice strain in nanocrystalline silver from X-ray diffraction line broadening. J. Mater. Sci. 43, 1175–1179 (2008). https://doi.org/10.1007/s10853-007-2300-8

    Article  CAS  Google Scholar 

  38. J. Nie, C. Jia, N. Shi, Y. Zhang, Y. Li, X. Jia, Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes. Int. J. Miner. Metall. Mater. 18, 695–702 (2011). https://doi.org/10.1007/s12613-011-0499-5

    Article  CAS  Google Scholar 

  39. E. Akbarzadeh, J.A. Picas, M. Teresa Baile, Microstructure and properties of aluminum silicon/short fibre carbon composites fabricated by semi-solid thixomixing. Mater. Des. 88, 683–692 (2015). https://doi.org/10.1016/j.matdes.2015.09.015

    Article  CAS  Google Scholar 

  40. Y. Nishida, Introduction to Metal Matrix Composites: Fabrication and Recycling. Springer (2013)

  41. M.E. Amestoy, F.F. Mateu, L. Froyen, Fabrication and tribological properties of Al reinforced with carbon fibres. Rev. Metal. 36, 375–384 (2000)

    Article  Google Scholar 

  42. A. Vencl, A. Rac, I. Bobić, Tribological behaviour of Al-based MMCs and their application in automotive industry. Tribol. Ind. 26, 31–38 (2004)

    Google Scholar 

  43. A.P. Sannino, H.J. Rack, Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion. Wear 189, 1–19 (1995). https://doi.org/10.1016/0043-1648(95)06657-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge use of the facilities the University of Wollongong Electron Microscopy Center and the assistance of EMC staff members. This research used equipment funded by Australian Research Council Grant LE0882813. The authors would also like to acknowledge the assistance of workshop technicians at UOW EIS Faculty. The authors would also like to acknowledge the HCED-Iraq and University of Misan, Iraq for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buraq Talib Shalash AL-Mosawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Mosawi, B.T.S., Wexler, D. & Calka, A. Characterization and Properties of Aluminium Reinforced Milled Carbon Fibres Composites Synthesized by Uniball Milling and Uniaxial Hot Pressing. Met. Mater. Int. 27, 3617–3640 (2021). https://doi.org/10.1007/s12540-020-00644-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00644-6

Keywords

Navigation