Skip to main content
Log in

Empirical-Statistical Modeling and Prediction of Geometric Characteristics for Laser-Aided Direct Metal Deposition of Inconel 718 Superalloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

It is requisite in laser-aided direct metal deposition (LADMD) to investigate the influence of three key process parameters (laser power, scanning speed, and powder feeding rate) on geometric characteristics of single-track deposits so as to acquire LADMD deposits with minimum defects and controlled geometric accuracy. In this study, LADMD of Inconel 718 superalloy was studied and the dependency of geometric characteristics on key process parameters was investigated as a combined parameter (PαVβFγ). A simple empirical-statistical modeling was used employing linear regression method. The results showed that the geometric characteristics had a linear relationship with a combined parameter including three/two key process parameters together. The height and wetting angle of single-track deposits were dependent on P2V−1F1 and P3/2V−1F1, respectively. The width of single-track deposits was dependent on P2V−1/4 but it was independent of powder feeding rate. The dilution of single-track deposits depended on V1F−1 while laser power had no effect on it. A process map is developed to enable optimization of the process parameters in LADMD process of Inconel 718.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Dehmas, J. Lacaze, A. Niang, B. Viguier, TEM study of high-temperature precipitation of delta phase in Inconel 718 Alloy. Adv. Mater. Sci. Eng. 2011, 1–9 (2011). https://doi.org/10.1155/2011/940634

    Article  CAS  Google Scholar 

  2. S. Ghosh, S. Yadav, G. Das, Study of standard heat treatment on mechanical properties of Inconel 718 using ball indentation technique. Mater. Lett. 62, 2619–2622 (2008). https://doi.org/10.1016/j.matlet.2008.01.001

    Article  CAS  Google Scholar 

  3. A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, A.K. Koul, Microstructural characteristics of forged and heat treated Inconel-718 disks. Mater. Des. 52, 791–800 (2013). https://doi.org/10.1016/j.matdes.2013.06.004

    Article  CAS  Google Scholar 

  4. C.-M. Kuoa, Y.-T. Yanga, H.-Y. Borb, C.-N. Weib, C.-C. Taia, Aging effects on the microstructure and creep behavior of Inconel 718 superalloy. Mater. Sci. Eng. A 510–511, 289–294 (2009). https://doi.org/10.1016/j.msea.2008.04.097

    Article  CAS  Google Scholar 

  5. S. Singh, S. Ramakrishna, R. Singh, Material issues in additive manufacturing: a review. J. Manuf. Process. 25, 185–200 (2017). https://doi.org/10.1016/J.JMAPRO.2016.11.006

    Article  Google Scholar 

  6. L. Li, A. Haghighi, Y. Yang, A novel 6-axis hybrid additive-subtractive manufacturing process: design and case studies. J. Manuf. Process. 33, 150–160 (2018). https://doi.org/10.1016/j.jmapro.2018.05.008

    Article  Google Scholar 

  7. M. Ansari, R. Shoja-Razavi, M. Barekat, H.C. Man, High-temperature oxidation behavior of laser-aided additively manufactured NiCrAlY coating. Corros. Sci. 118, 168–177 (2017). https://doi.org/10.1016/j.corsci.2017.02.001

    Article  CAS  Google Scholar 

  8. R. Conteri, T. Borkar, S. Nag, D. Jaeger, X. Chen, R.V. Ramanujan et al., Laser additive processing of Fe–Si–B–Cu–Nb magnetic alloys. J. Manuf. Process. 29, 175–181 (2017). https://doi.org/10.1016/J.JMAPRO.2017.07.029

    Article  Google Scholar 

  9. A. Ciraud, Process and Device for the Manufacture of any Objects Desired from any Meltable Material (FRG Disclosure Publication, Berlin, 1972), p. 2263777

    Google Scholar 

  10. L. Costa, I. Felde, T. Réti, Z. Kálazi, R. Colaço, R. Vilar et al., A simplified semi-empirical method to select the processing parameters for laser clad coatings. Mater. Sci. Forum 414–415, 385–394 (2003). https://doi.org/10.4028/www.scientific.net/MSF.414-415.385

    Article  Google Scholar 

  11. U. de Oliveira, V. Ocelík, J.T.M. De Hosson, Analysis of coaxial laser cladding processing conditions. Surf. Coat. Technol. 197, 127–136 (2005). https://doi.org/10.1016/j.surfcoat.2004.06.029

    Article  CAS  Google Scholar 

  12. J. Paulo Davim, C. Oliveira, A. Cardoso, Laser cladding: an experimental study of geometric form and hardness of coating using statistical analysis. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 220, 1549–1554 (2006)

    Article  Google Scholar 

  13. V. Ocelik, U. de Oliveira, M. de Boer, J.T.M. de Hosson, Thick Co-based coating on cast iron by side laser cladding: analysis of processing conditions and coating properties. Surf. Coat. Technol. 201, 5875–5883 (2007). https://doi.org/10.1016/j.surfcoat.2006.10.044

    Article  CAS  Google Scholar 

  14. J. Paulo Davim, C. Oliveira, A. Cardoso, Predicting the geometric form of clad in laser cladding by powder using multiple regression analysis (MRA). Mater. Des. 29, 554–557 (2008). https://doi.org/10.1016/j.matdes.2007.01.023

    Article  CAS  Google Scholar 

  15. Y. Sun, M. Hao, Statistical analysis and optimization of process parameters in Ti6Al4 V laser cladding using Nd:YAG laser. Opt. Lasers Eng. 50, 985–995 (2012). https://doi.org/10.1016/j.optlaseng.2012.01.018

    Article  Google Scholar 

  16. H. El Cheikh, B. Courant, S. Branchu, J.-Y. Hascoët, R. Guillén, Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process. Opt. Lasers Eng. 50, 413–422 (2012). https://doi.org/10.1016/j.optlaseng.2011.10.014

    Article  Google Scholar 

  17. S. Kumar, V. Sharma, A.K.S. Choudhary, S. Chattopadhyaya, S. Hloch, Determination of layer thickness in direct metal deposition using dimensional analysis. Int. J. Adv. Manuf. Technol. 67, 2681–2687 (2013). https://doi.org/10.1007/s00170-012-4683-1

    Article  Google Scholar 

  18. S. Saqiba, R.J. Urbanica, K. Aggarwal, Analysis of laser cladding bead morphology for developing additive manufacturing travel paths. Procedia CIRP 17, 824–829 (2014). https://doi.org/10.1016/j.procir.2014.01.098

    Article  Google Scholar 

  19. M. Barekat, R. Shoja Razavi, A. Ghasemi, Nd:YAG laser cladding of Co–Cr–Mo alloy on γ-TiAl substrate. Opt. Laser Technol. 80, 145–152 (2016). https://doi.org/10.1016/j.optlastec.2016.01.003

    Article  CAS  Google Scholar 

  20. M. Ansari, R. Shoja Razavi, M. Barekat, An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy. Opt. Laser Technol. 86, 136–144 (2016). https://doi.org/10.1016/j.optlastec.2016.06.014

    Article  CAS  Google Scholar 

  21. X. Shi, S. Ma, C. Liu, Q. Wu, Parameter optimization for Ti–47Al–2Cr–2Nb in selective laser melting based on geometric characteristics of single scan tracks. Opt. Laser Technol. 90, 71–79 (2017). https://doi.org/10.1016/j.optlastec.2016.11.002

    Article  CAS  Google Scholar 

  22. M. Erfanmanesh, H. Abdollah-Pour, H. Mohammadian-Semnani, R. Shoja-Razavi, An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel. Opt. Laser Technol. 97, 180–186 (2017). https://doi.org/10.1016/j.optlastec.2017.06.026

    Article  CAS  Google Scholar 

  23. M. Nabhani, R. Shoja Razavi, M. Barekat, An empirical-statistical model for laser cladding of Ti–6Al–4V powder on Ti–6Al–4V substrate. Opt. Laser Technol. 100, 265–271 (2018). https://doi.org/10.1016/j.optlastec.2017.10.015

    Article  CAS  Google Scholar 

  24. M. Erfanmanesh, R. Shoja-Razavi, H. Abdollah-Pour, H. Mohammadian-Semnani, Influence of using electroless Ni–P coated WC–Co powder on laser cladding of stainless steel. Surf. Coat. Technol. (2018). https://doi.org/10.1016/j.surfcoat.2018.05.016

    Article  Google Scholar 

  25. E. Toyserkani, A. Khajepour, S. Corbin, Laser Cladding (CRC Press, Boca Raton, 2004)

    Book  Google Scholar 

  26. Y. Fu, A. Loredo, B. Martin, A.B. Vannes, A theoretical model for laser and powder particles interaction during laser cladding. J. Mater. Process. Technol. 128, 106–112 (2002). https://doi.org/10.1016/S0924-0136(02)00433-8

    Article  Google Scholar 

  27. I. Tabernero, A. Lamikiz, S. Martínez, E. Ukar, L.N. López De Lacalle, Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process. J. Mater. Process. Technol. 212, 516–522 (2012). https://doi.org/10.1016/j.jmatprotec.2011.10.019

    Article  Google Scholar 

  28. W. Devesse, D. De Baere, P. Guillaume, Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing. J. Laser Appl. 27, S29208 (2015). https://doi.org/10.2351/1.4906394

    Article  Google Scholar 

  29. W.M. Steen, J. Mazumder, Laser Material Processing, 4th edn. (Springer, London, 2010). https://doi.org/10.1007/978-1-84996-062-5

    Book  Google Scholar 

  30. H.-J. Bartsch, Geometry. Handbook of Mathematical Formulas (Academic Press, New York, 1974), p. 155. https://doi.org/10.1016/b978-0-12-080050-6.50007-5

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Barekat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jelvani, S., Shoja Razavi, R., Barekat, M. et al. Empirical-Statistical Modeling and Prediction of Geometric Characteristics for Laser-Aided Direct Metal Deposition of Inconel 718 Superalloy. Met. Mater. Int. 26, 668–681 (2020). https://doi.org/10.1007/s12540-019-00355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00355-7

Keywords

Navigation