Skip to main content
Log in

New insights to the promoted bainitic transformation in prior deformed austenite in a Fe-C-Mn-Si alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The varying trends of the amount and rate of bainitic transformation with strains at low temperature were investigated through metallography, X-ray diffraction and dilatometry. The results show that deformation at 573 K promotes bainitic transformation, whereas the promotion degree on bainite transformation by ausforming is nonlinear with strains. The amount of bainite in deformed austenite first increases and then decreases with the increase of strains. There exists a maximum value of the promotion effect corresponding to a critical small strain at a low temperature. Bainitic transformation rate can be increased by ausforming at low temperature, whereas a large strain weakens the acceleration effect. The amount of bainite in deformed materials is synthetically depended on the effect of enhanced nucleation and repressed growth. In addition, the volume fraction of retained austenite is not completely consistent with carbon content, indicating that ausforming plays a important role in determining the amount of austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Bleck and F. Gerdemann, Mater. Manuf. Process. 26, 43 (2011).

    Article  Google Scholar 

  2. F. G. Caballero, C. García-mateo, C. Capdevila, and C. G. Andrés, Mater. Manuf. Process. 22, 502 (2007).

    Article  Google Scholar 

  3. F. G. Caballero, H. K. D. H. Bhadeshia, K. J. A. Mawella, D. G. Jones, and P. Brown, Mater. Sci. Tech. Ser. 18, 279 (2002).

    Article  Google Scholar 

  4. C. Garcia-Mateo, F. G. Caballero, and H. K. D. H. Bhadeshia, ISIJ Int. 43, 1238 (2003).

    Article  Google Scholar 

  5. F. G. Caballero and H. K. D. H. Bhadeshia, Curr. Opin. Solid St. M. 8, 251 (2004).

    Article  Google Scholar 

  6. H. K. D. H. Bhadeshia, Mater. Sci. Forum 500-501, 63 (2005).

    Article  Google Scholar 

  7. C. Garcia-Mateo and F. G. Caballero, ISIJ Int. 45, 1736 (2005).

    Article  Google Scholar 

  8. C. Garcia-Mateo, F. G. Caballero, and H. K. D. H. Bhadeshia, Mater. Sci. Forum 500-501, 495 (2005).

    Article  Google Scholar 

  9. C. Garcia-Mateo and F. G. Caballero, Int. J. Mater. Res. 98, 137 (2007).

    Article  Google Scholar 

  10. F. G. Caballero, M. K. Miller, S. S. Babu, and C. Garcia-Mateo, Acta Mater. 55, 381 (2007).

    Article  Google Scholar 

  11. C. Garcia-Mateo, F. G. Caballero, and H. K. D. H. Bhadeshia, ISIJ Int. 43, 1821 (2003).

    Article  Google Scholar 

  12. P. H. Shipway and H. K. D. H. Bhadeshia, Mat. Sci. Technol. 11, 1116 (1995).

    Article  Google Scholar 

  13. R. H. Larn and J. R. Yang, Mat. Sci. Eng. A 278, 278 (2000).

    Article  Google Scholar 

  14. C. S. Chiou, J. R. Yang, and C. Y. Huang, Mater. Chem. Phys. 69, 113 (2001).

    Article  Google Scholar 

  15. S. B. Singh and H. K. D. H. Bhadeshia, Mater. Sci. Technol. 12, 610 (1996).

    Article  Google Scholar 

  16. H. K. D. H. Bhadeshia, Mat. Sci. Eng. A 273-275, 58 (1999).

    Article  Google Scholar 

  17. X. J. Jin, N. Min, K. Y. Zheng, T. Y. Hsu, and Z. Y. Xu, Mat. Sci. Eng. A 438-440, 170 (2006).

    Article  Google Scholar 

  18. W. Gong, Y. Tomota, M. S. Koo, and Y. Adachi, Scripta Mater. 63, 819 (2010).

    Article  Google Scholar 

  19. W. Gong, Y. Tomota, M. S. Koo, Y. Adachi, A. M. Paradowska, J. F. Kelleher, et al. Acta Mater. 61, 4142 (2013).

    Article  Google Scholar 

  20. H. J. Hu, H. S. Zurob, G. Xu, D. Embury, and G. R. Purdy, Mat. Sci. Eng. A 626, 34 (2015).

    Article  Google Scholar 

  21. H. K. D. H. Bhadeshia and A. R. Waugh, Acta Metall. 30, 775 (1982).

    Article  Google Scholar 

  22. H. J. Hu, G. Xu, L. Wang, Z. L. Xue, Y. L. Zhang, and G. H. Liu, Mater. Design 84, 95 (2015).

    Article  Google Scholar 

  23. S. Lee, S. J. Lee, and B. C. De Cooman, Scripta Mater. 65, 225 (2011).

    Article  Google Scholar 

  24. H. K. D. H. Bhadeshia, Mater. Sci. Technol. 21, 1293 (2005).

    Article  Google Scholar 

  25. J. G. He, A. M. Zhao, C. Zhi, and H. L. Fan, Scripta Mater. 107, 71 (2015).

    Article  Google Scholar 

  26. G. Xu, F. Liu, L. Wang, and H. J. Hu, Scripta Mater. 68, 833 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Hj., Xu, G., Zhou, Mx. et al. New insights to the promoted bainitic transformation in prior deformed austenite in a Fe-C-Mn-Si alloy. Met. Mater. Int. 23, 233–238 (2017). https://doi.org/10.1007/s12540-017-6407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6407-4

Keywords

Navigation