Skip to main content
Log in

Impact of Brownian motion on the particle settling in molten metals

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Understanding the settling behavior of nanoparticles in molten metals/alloys is important as it will aid in achieving uniform dispersions of reinforcement particles in metal matrix nanocomposites. Uniform dispersions are necessary to activate the Orowan strengthening mechanism, which can increase yield strength without significant diminishment of ductility. In this work, an analytical model of particle size effects on settling is described that takes into account both deterministic Stokes’ law and stochastic Brownian motion. The model shows a clear transitional behavior where settling velocity follows Stokes’ law for large particles and then drops to zero for small particles implying that Brownian motion predominates. It indicated that, in the Brownian motion regime, where the discrete nature of the liquid must be considered, the random motion imparted by unbalanced collisions can overwhelm the motions normally imposed by forces such as gravity, viscous drag, and thermal/concentration gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. B. Nguyen and M. Gupta, Compos. Sci. Technol. 68, 2185 (2008).

    Article  Google Scholar 

  2. S. F. Hassan and M. Gupta, Metall. Mater. Trans. A. 36, 2253 (2005).

    Article  Google Scholar 

  3. C. S. Goh, J. Wei, L. C. Lee, and M. Gupta, Acta Mater. 55, 5115 (2007).

    Article  Google Scholar 

  4. J. H. Kim, M.-G. Lee, D. Kim, and R. H. Wagoner, Met. Mater. Int. 17, 291 (2011).

    Article  Google Scholar 

  5. J. B. Ferguson, F. Sheykh-Jaberi, C.-S. Kim, P. K. Rohatgi, and K. Cho, Mater. Sci. Eng. A. 558, 193 (2012).

    Article  Google Scholar 

  6. C.-S. Kim, I. Sohn, M. Nezafati, J. B. Ferguson, B. F. Schultz, Z. Bajestani-Gohari, P. K. Rohatgi, and K. Cho, J. Mater. Sci. 48, 4191 (2013).

    Article  Google Scholar 

  7. A. Mazahery, H. Abdizadeh, and H. R. Baharvandi, Mater. Sci. Eng. A. 518, 61 (2009).

    Article  Google Scholar 

  8. B. F. Schultz, J. B. Ferguson, and P. K. Rohatgi, Mater. Sci. Eng. A. 530, 87 (2011).

    Article  Google Scholar 

  9. S. Mula, S. Padhi, S. C. Panigrahi, S. K. Pabi, and S. Ghosh, Mater. Res. Bull. 44, 1154 (2009).

    Article  Google Scholar 

  10. M. Easton and D. St John, Metall. Mater. Trans. A. 30, 1613 (1999).

    Article  Google Scholar 

  11. A. Bareggi, E. Maire, A. Lasalle, and S. Deville, J. Amer. Ceram. Soc. 94, 3570 (2011).

    Article  Google Scholar 

  12. L. Fan, Ph. D. Thesis, Auburn University, Alabama (2011).

    Google Scholar 

  13. Y. Chino and D. C. Dunand, Acta Mater. 56, 105 (2008).

    Article  Google Scholar 

  14. S. A. Barr and E. Luijten, Acta Mater. 58, 709 (2010).

    Article  Google Scholar 

  15. M. Smoluchowski, Ann. Phys. 21, 756 (1906).

    Article  Google Scholar 

  16. CRC Handbook of Chemistry and Physics, 93rd ed., CRC Press Boca Raton, FL. (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, J.B., Schultz, B.F., Rohatgi, P.K. et al. Impact of Brownian motion on the particle settling in molten metals. Met. Mater. Int. 20, 747–755 (2014). https://doi.org/10.1007/s12540-014-4020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-4020-3

Keywords

Navigation